Juan Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1019255/publications.pdf

Version: 2024-02-01

		758635	752256
82	720	12	20
papers	citations	h-index	g-index
			c - .
83	83	83	674
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Development of an indirect ELISA method based on the VP4 protein for detection antibody against duck hepatitis A virus type 1. Journal of Virological Methods, 2022, 300, 114393.	1.0	1
2	The lysine at position 151 of the duck hepatitis A virus 1 2C protein is critical for its NTPase activities. Veterinary Microbiology, 2022, 264, 109300.	0.8	3
3	Immunogenicity and protection of a Pasteurella multocida strain with a truncated lipopolysaccharide outer core in ducks. Veterinary Research, 2022, 53, 17.	1.1	5
4	Duck plague virus UL41 protein inhibits RIG-I/MDA5-mediated duck IFN-β production via mRNA degradation activity. Veterinary Research, 2022, 53, 22.	1.1	2
5	The protein encoded by the duck plague virus UL14 gene regulates virion morphogenesis and affects viral replication. Poultry Science, 2022, 101, 101863.	1.5	O
6	The G92 NS2B mutant of Tembusu virus is involved in severe defects in progeny virus assembly. Veterinary Microbiology, 2022, 267, 109396.	0.8	0
7	Evaluation of the Safety and Immunogenicity of Duck-Plague Virus gE Mutants. Frontiers in Immunology, 2022, 13, 882796.	2.2	6
8	Assembly-defective Tembusu virus ectopically expressing capsid protein is an approach for live-attenuated flavivirus vaccine development. Npj Vaccines, 2022, 7, 51.	2.9	1
9	Role of the homologous MTase-RdRp interface of flavivirus intramolecular NS5 on duck tembusu virus. Veterinary Microbiology, 2022, 269, 109433.	0.8	2
10	RNA-Seq analysis of duck embryo fibroblast cells gene expression during duck Tembusu virus infection. Veterinary Research, 2022, 53, 34.	1.1	2
11	Features and Functions of the Conserved Herpesvirus Tegument Protein UL11 and Its Binding Partners. Frontiers in Microbiology, 2022, 13, .	1.5	1
12	The autophagyâ€related degradation of MDA5 by Tembusu virus nonstructural 2B disrupts IFNβ production. FASEB Journal, 2022, 36, .	0.2	1
13	Two nuclear localization signals regulate intracellular localization of the duck enteritis virus UL13 protein. Poultry Science, 2021, 100, 26-38.	1.5	2
14	Immunogenicity and protection efficacy of a Salmonella enterica serovar Typhimurium fnr, arcA and fliC mutant. Vaccine, 2021, 39, 588-595.	1.7	10
15	Natural Transformation of Riemerella columbina and Its Determinants. Frontiers in Microbiology, 2021, 12, 634895.	1.5	4
16	The lipopolysaccharide outer core transferase genes pcgD and hptE contribute differently to the virulence of Pasteurella multocida in ducks. Veterinary Research, 2021, 52, 37.	1.1	6
17	Duck Hepatitis A Virus Type 1 Induces elF2α Phosphorylation-Dependent Cellular Translation Shutoff via PERK/GCN2. Frontiers in Microbiology, 2021, 12, 624540.	1.5	5
18	DPV UL41 gene encoding protein induces host shutoff activity and affects viral replication. Veterinary Microbiology, 2021, 255, 108979.	0.8	8

#	Article	lF	Citations
19	Tracing genetic signatures of batâ€toâ€human coronaviruses and early transmission of North American SARSâ€CoVâ€2. Transboundary and Emerging Diseases, 2021, , .	1.3	3
20	SC75741 antagonizes vesicular stomatitis virus, duck Tembusu virus, and duck plague virus infection in duck cells through promoting innate immune responses. Poultry Science, 2021, 100, 101085.	1.5	5
21	Molecular cloning of duck CD40 and its immune function research. Poultry Science, 2021, 100, 101100.	1.5	0
22	The intracellular domain of duck plague virus glycoprotein E affects UL11 protein incorporation into viral particles. Veterinary Microbiology, 2021, 257, 109078.	0.8	10
23	Substitutions at Loop Regions of TMUV E Protein Domain III Differentially Impair Viral Entry and Assembly. Frontiers in Microbiology, 2021, 12, 688172.	1.5	1
24	Multifaceted Roles of ICP22/ORF63 Proteins in the Life Cycle of Human Herpesviruses. Frontiers in Microbiology, 2021, 12, 668461.	1.5	6
25	An Exposed Outer Membrane Hemin-Binding Protein Facilitates Hemin Transport by a TonB-Dependent Receptor in Riemerella anatipestifer. Applied and Environmental Microbiology, 2021, 87, e0036721.	1.4	9
26	Effect of Nutritional Determinants and TonB on the Natural Transformation of Riemerella anatipestifer. Frontiers in Microbiology, 2021, 12, 644868.	1.5	4
27	Replication/Assembly Defective Avian Flavivirus With Internal Deletions in the Capsid Can Be Used as an Approach for Living Attenuated Vaccine. Frontiers in Immunology, 2021, 12, 694959.	2.2	4
28	Identification of the Natural Transformation Genes in Riemerella anatipestifer by Random Transposon Mutagenesis. Frontiers in Microbiology, 2021, 12, 712198.	1.5	3
29	Putative Riemerella anatipestifer Outer Membrane Protein H Affects Virulence. Frontiers in Microbiology, 2021, 12, 708225.	1.5	7
30	A viroporin-like 2B protein of duck hepatitis A virus 1 that induces incomplete autophagy in DEF cells. Poultry Science, 2021, 100, 101331.	1.5	6
31	N130, N175 and N207 are N-linked glycosylation sites of duck Tembusu virus NS1 that are important for viral multiplication, viremia and virulence in ducklings. Veterinary Microbiology, 2021, 261, 109215.	0.8	8
32	Nuclear localization of duck Tembusu virus NS5 protein attenuates viral replication in vitro and NS5-NS2B3 interaction. Veterinary Microbiology, 2021, 262, 109239.	0.8	4
33	Duck hepatitis A virus 1 has lymphoid tissue tropism altering the organic immune responses of mature ducks. Transboundary and Emerging Diseases, 2021, 68, 3588-3600.	1.3	2
34	Comparative genomics and metabolomics analysis of Riemerella anatipestifer strain CH-1 and CH-2. Scientific Reports, 2021, 11, 616.	1.6	3
35	DHAV-1 Blocks the Signaling Pathway Upstream of Type I Interferon by Inhibiting the Interferon Regulatory Factor 7 Protein. Frontiers in Microbiology, 2021, 12, 700434.	1.5	6
36	The LORF5 Gene Is Non-essential for Replication but Important for Duck Plague Virus Cell-to-Cell Spread Efficiently in Host Cells. Frontiers in Microbiology, 2021, 12, 744408.	1.5	4

#	Article	IF	CITATIONS
37	ICP22/IE63 Mediated Transcriptional Regulation and Immune Evasion: Two Important Survival Strategies for Alphaherpesviruses. Frontiers in Immunology, 2021, 12, 743466.	2.2	2
38	UL11 Protein Is a Key Participant of the Duck Plague Virus in Its Life Cycle. Frontiers in Microbiology, 2021, 12, 792361.	1.5	5
39	Duck Plague Virus pUL48 Protein Activates the Immediate-Early Gene to Initiate the Transcription of the Virus Gene. Frontiers in Microbiology, 2021, 12, 795730.	1.5	2
40	Emergence of a multidrug-resistant hypervirulent Pasteurella multocida ST342 strain with a floR-carrying plasmid. Journal of Global Antimicrobial Resistance, 2020, 20, 348-350.	0.9	12
41	Duck enteritis virus UL21 is a late gene encoding a protein that interacts with pUL16. BMC Veterinary Research, 2020, 16, 8.	0.7	8
42	Development of a simple and rapid immunochromatographic strip test for detecting duck plague virus antibodies based on gl protein. Journal of Virological Methods, 2020, 277, 113803.	1.0	4
43	SOCS Proteins Participate in the Regulation of Innate Immune Response Caused by Viruses. Frontiers in Immunology, 2020, $11,558341$.	2.2	41
44	Genetic analysis of a porcine reproductive and respiratory syndrome virus 1 strain in China with new patterns of amino acid deletions in nsp2, GP3 and GP4. Microbial Pathogenesis, 2020, 149, 104531.	1.3	9
45	Duck enteritis virus pUL47, as a late structural protein localized in the nucleus, mainly depends on residues 40 to 50 and 768 to 777 and inhibits IFN- \hat{l}^2 signalling by interacting with STAT1. Veterinary Research, 2020, 51, 135.	1.1	8
46	The First Nonmammalian Pegivirus Demonstrates Efficient In Vitro Replication and High Lymphotropism. Journal of Virology, 2020, 94, .	1.5	9
47	The functional identification of Dps in oxidative stress resistance and virulence of Riemerella anatipestifer CH-1 using a new unmarked gene deletion strategy. Veterinary Microbiology, 2020, 247, 108730.	0.8	14
48	The role of host eIF2α in viral infection. Virology Journal, 2020, 17, 112.	1.4	60
49	Structures and Functions of the 3′ Untranslated Regions of Positive-Sense Single-Stranded RNA Viruses Infecting Humans and Animals. Frontiers in Cellular and Infection Microbiology, 2020, 10, 453.	1.8	23
50	Research Note: Duck plague virus glycoprotein I influences cell–cell spread and final envelope acquisition. Poultry Science, 2020, 99, 6647-6652.	1.5	1
51	Heterologous prime-boost: an important candidate immunization strategy against Tembusu virus. Virology Journal, 2020, 17, 67.	1.4	4
52	Host shutoff activity of VHS and SOX-like proteins: role in viral survival and immune evasion. Virology Journal, 2020, 17, 68.	1.4	13
53	Development and evaluation of an indirect ELISA based on recombinant structural protein VP2 to detect antibodies against duck hepatitis A virus. Journal of Virological Methods, 2020, 282, 113903.	1.0	2
54	Duck Tembusu virus promotes the expression of suppressor of cytokine signaling 1 by downregulating miR-148a-5p to facilitate virus replication. Infection, Genetics and Evolution, 2020, 85, 104392.	1.0	6

#	Article	lF	Citations
55	Regulation of Apoptosis by Enteroviruses. Frontiers in Microbiology, 2020, 11, 1145.	1.5	11
56	Duck Enteritis Virus VP16 Antagonizes IFN- $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Mediated Antiviral Innate Immunity. Journal of Immunology Research, 2020, 2020, 1-13.	0.9	5
57	Duck IFIT5 differentially regulates Tembusu virus replication and inhibits virus-triggered innate immune response. Cytokine, 2020, 133, 155161.	1.4	7
58	Isolation and Selection of Duck Primary Cells as Pathogenic and Innate Immunologic Cell Models for Duck Plague Virus. Frontiers in Immunology, 2020, 10, 3131.	2.2	9
59	DEF Cell-Derived Exosomal miR-148a-5p Promotes DTMUV Replication by Negative Regulating TLR3 Expression. Viruses, 2020, 12, 94.	1.5	12
60	Duplicate US1 Genes of Duck Enteritis Virus Encode a Non-essential Immediate Early Protein Localized to the Nucleus. Frontiers in Cellular and Infection Microbiology, 2020, 9, 463.	1.8	9
61	The Pivotal Roles of US3 Protein in Cell-to-Cell Spread and Virion Nuclear Egress of Duck Plague Virus. Scientific Reports, 2020, 10, 7181.	1.6	15
62	Autophagy Is a Potential Therapeutic Target Against Duck Tembusu Virus Infection in vivo. Frontiers in Cellular and Infection Microbiology, 2020, 10, 155.	1.8	2
63	Duck Tembusu Virus Utilizes miR-221-3p Expression to Facilitate Viral Replication via Targeting of Suppressor of Cytokine Signaling 5. Frontiers in Microbiology, 2020, 11, 596.	1.5	7
64	Emergence of Escherichia coli isolates producing NDM-1 carbapenemase from waterfowls in Hainan island, China. Acta Tropica, 2020, 207, 105485.	0.9	4
65	Apoptosis Triggered by ORF3 Proteins of the Circoviridae Family. Frontiers in Cellular and Infection Microbiology, 2020, 10, 609071.	1.8	12
66	Transcriptome analysis of duck embryo fibroblasts for the dynamic response to duck tembusu virus infection and dual regulation of apoptosis genes. Aging, 2020, 12, 17503-17527.	1.4	10
67	DprA Is Essential for Natural Competence in Riemerella anatipestifer and Has a Conserved Evolutionary Mechanism. Frontiers in Genetics, 2019, 10, 429.	1.1	15
68	Role of LptD in Resistance to Glutaraldehyde and Pathogenicity in Riemerella anatipestifer. Frontiers in Microbiology, 2019, 10, 1443.	1.5	6
69	Therapeutic effects of duck Tembusu virus capsid protein fused with staphylococcal nuclease protein to target Tembusu infection in vitro. Veterinary Microbiology, 2019, 235, 295-300.	0.8	7
70	Innate Immune Evasion of Alphaherpesvirus Tegument Proteins. Frontiers in Immunology, 2019, 10, 2196.	2.2	35
71	The VP3 protein of duck hepatitis A virus mediates host cell adsorption and apoptosis. Scientific Reports, 2019, 9, 16783.	1.6	15
72	Prevalence of fluoroquinolone resistance and mutations in the gyrA, parC and parE genes of Riemerella anatipestifer isolated from ducks in China. BMC Microbiology, 2019, 19, 271.	1.3	7

#	Article	IF	Citations
73	Induction of a protective response in ducks vaccinated with a DNA vaccine encoding engineered duck circovirus Capsid protein. Veterinary Microbiology, 2018, 225, 40-47.	0.8	7
74	Oral Delivery of a DNA Vaccine Expressing the PrM and E Genes: A Promising Vaccine Strategy against Flavivirus in Ducks. Scientific Reports, 2018, 8, 12360.	1.6	14
75	Analysis of the microRNA expression profiles in DEF cells infected with duck Tembusu virus. Infection, Genetics and Evolution, 2018, 63, 126-134.	1.0	14
76	Oral Vaccination with a DNA Vaccine Encoding Capsid Protein of Duck Tembusu Virus Induces Protection Immunity. Viruses, 2018, 10, 180.	1.5	24
77	Local synthesis of immunosuppressive glucocorticoids in the intestinal epithelium regulates anti-viral immune responses. Cellular Immunology, 2018, 334, 1-10.	1.4	18
78	A behavioral study on tonal working memory in musicians and non-musicians. PLoS ONE, 2018, 13, e0201765.	1.1	14
79	The pregenome/C RNA of duck hepatitis B virus is not used for translation of core protein during the early phase of infection in vitro. Virus Research, 2015, 196, 13-19.	1.1	1
80	An Attenuated Duck Plague Virus (DPV) Vaccine Induces both Systemic and Mucosal Immune Responses To Protect Ducks against Virulent DPV Infection. Vaccine Journal, 2014, 21, 457-462.	3.2	22
81	Attenuated Salmonella typhimurium delivering DNA vaccine encoding duck enteritis virus UL24 induced systemic and mucosal immune responses and conferred good protection against challenge. Veterinary Research, 2012, 43, 56.	1.1	21
82	Inhibition of porcine reproductive and respiratory syndrome virus replication by short hairpin RNA in MARC-145 cells. Veterinary Microbiology, 2006, 115, 302-310.	0.8	29