
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10192376/publications.pdf Version: 2024-02-01

HELLEN LIN

#	Article	IF	CITATIONS
1	Efficient, Large Area ITOâ€andâ€PEDOTâ€free Organic Solar Cell Subâ€modules. Advanced Materials, 2012, 24, 2572-2577.	21.0	148
2	High efficient plastic solar cells fabricated with a high-throughput gravure printing method. Solar Energy Materials and Solar Cells, 2010, 94, 1673-1680.	6.2	121
3	Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. Nature Communications, 2021, 12, 52.	12.8	94
4	Interface Engineering of Solution-Processed Hybrid Organohalide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 21681-21687.	8.0	89
5	Efficient, Large Area, and Thick Junction Polymer Solar Cells with Balanced Mobilities and Low Defect Densities. Advanced Energy Materials, 2015, 5, 1401221.	19.5	80
6	Polymerâ^'Electrode Interfacial Effect on Photovoltaic Performances in Poly(3-hexylthiophene):Phenyl-C61-butyric Acid Methyl Ester Based Solar Cells. Journal of Physical Chemistry C, 2009, 113, 16807-16810.	3.1	55
7	Investigation on photoconductive properties of MEH-PPV/CdSe-nanocrystal nanocomposites. Materials Letters, 2007, 61, 2178-2181.	2.6	40
8	Enhancement of carrier mobility in MEH-PPV film prepared under presence of electric field. Chemical Physics Letters, 2006, 425, 353-355.	2.6	39
9	Extremely efficient flexible organic solar cells with a graphene transparent anode: Dependence on number of layers and doping of graphene. Carbon, 2021, 171, 350-358.	10.3	33
10	Electric Field and Mobility Dependent Firstâ€Order Recombination Losses in Organic Solar Cells. Advanced Energy Materials, 2017, 7, 1601379.	19.5	31
11	A Double Support Layer for Facile Clean Transfer of Two-Dimensional Materials for High-Performance Electronic and Optoelectronic Devices. ACS Nano, 2019, 13, 5513-5522.	14.6	29
12	Charge Transport without Recombination in Organic Solar Cells and Photodiodes. Journal of Physical Chemistry C, 2015, 119, 26866-26874.	3.1	28
13	Defect/Interface Recombination Limited Quasi-Fermi Level Splitting and Open-Circuit Voltage in Mono- and Triple-Cation Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 37647-37656.	8.0	28
14	Factors Influencing the Efficiency of Current Collection in Large Area, Monolithic Organic Solar Cells. Advanced Energy Materials, 2012, 2, 1338-1342.	19.5	27
15	Efficient organic photovoltaic cells on a single layer graphene transparent conductive electrode using MoO _x as an interfacial layer. Nanoscale, 2017, 9, 251-257.	5.6	26
16	Thickness dependence and solution-degradation effect in poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester based solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 465-470.	6.2	24
17	Maternal separation exacerbates Alzheimer's disease-like behavioral and pathological changes in adult APPswe/PS1dE9 mice. Behavioural Brain Research, 2017, 318, 18-23.	2.2	24
18	Improving photovoltaic properties via electric-field-induced orientation of conjugated polymer. Solid State Communications, 2006, 140, 555-558.	1.9	23

#	Article	IF	CITATIONS
19	Impact of Dimerization on Phase Separation and Crystallinity in Bulk Heterojunction Films Containing Non-Fullerene Acceptors. Macromolecules, 2016, 49, 4404-4415.	4.8	23
20	Effect of molecular aggregation by thermal treatment on photovoltaic properties of MEH-PPV: Fullerene-based solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 289-294.	6.2	22
21	Improved stability of non-ITO stacked electrodes for large area flexible organic solar cells. Solar Energy Materials and Solar Cells, 2014, 130, 182-190.	6.2	20
22	Enhanced photovoltaic properties of polymer–fullerene bulk heterojunction solar cells by thermal annealing. Solid State Communications, 2007, 142, 181-184.	1.9	19
23	Bulk heterojunction thickness uniformity – a limiting factor in large area organic solar cells?. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2246-2254.	1.8	17
24	Ambipolar charge transport in bulk heterojunction of poly(2-methoxy-5-(2â€2-ethylhexyloxy)-1,4-phenylenevinylene)â^•C60 composite. Journal of Applied Physics, 2007, 102, 073108.	2.5	16
25	Application of an A–A′–A-Containing Acceptor Polymer in Sequentially Deposited All-Polymer Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 24046-24054.	8.0	16
26	High open-circuit voltage in UV photovoltaic cell based on polymer/inorganic bilayer structure. Chemical Physics, 2006, 330, 501-505.	1.9	15
27	Colour Centres and Energy Transfer in BaF2-xClx:Eu2+ Phosphors. Journal of Rare Earths, 2006, 24, 129-133.	4.8	14
28	Simple dithienosilole-based nonfused nonfullerene acceptor for efficient organic photovoltaics. Dyes and Pigments, 2021, 184, 108789.	3.7	14
29	Grapheneâ€Based Transparent Conducting Electrodes for High Efficiency Flexible Organic Photovoltaics: Elucidating the Source of the Power Losses. Solar Rrl, 2019, 3, 1900042.	5.8	13
30	A New Promising X-Ray Storage Phosphor BaBrCl:Eu2+. Journal of Rare Earths, 2006, 24, 503-505.	4.8	12
31	Photoconductive Properties of MEH-PPV/CuS-Nanoparticle Composites. Chinese Physics Letters, 2006, 23, 693-696.	3.3	12
32	Precursor Route Poly(1,4-phenylenevinylene)-Based Interlayers for Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 889-899.	5.1	11
33	Study on the hole-type traps in BaFCl:Eu2+ phosphor. Journal of Luminescence, 2007, 122-123, 385-388.	3.1	10
34	Photovoltaic properties of MEH-PPV/TiO2 nanocomposites. Science Bulletin, 2008, 53, 2743-2747.	9.0	10
35	A Triarylamine-Based Anode Modifier for Efficient Organohalide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 9096-9101.	8.0	10
36	Semitransparent indium-tin-oxide-free non-fullerene organic photodetectors with double-side ultraviolet selective responses. Materials Letters, 2018, 230, 289-292.	2.6	10

#	Article	IF	CITATIONS
37	Dielectric Constant Engineering of Organic Semiconductors: Effect of Planarity and Conjugation Length. Advanced Functional Materials, 2022, 32, 2104259.	14.9	10
38	Optical storage studies on the trapping states of BaFCl:Eu2Â. Journal of Physics Condensed Matter, 2003, 15, 2407-2412.	1.8	9
39	Loss Mechanisms in Fullerene-Based Low-Donor Content Organic Solar Cells. Journal of Physical Chemistry C, 2018, 122, 20611-20618.	3.1	9
40	Hole Transport Properties of MEH-PPV at Different Excitation Wavelengths. Chinese Physics Letters, 2006, 23, 950-952.	3.3	8
41	Effect of TiO 2 Nanotubes on Polymer-Fullerene Bulk Heterojunction Solar Cells. Chinese Physics Letters, 2007, 24, 2654-2656.	3.3	8
42	Spectral response tuning using an optical spacer in broad-band organic solar cells. Applied Physics Letters, 2013, 102, 013302.	3.3	8
43	Electric field-induced quenching of photoluminescence in the MEH-PPV:C60 composite thin film. Chemical Physics Letters, 2007, 443, 374-377.	2.6	7
44	Concentration dependence of photovoltaic properties of photodiodes based on polymer–fullerene blends. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 137, 5-9.	3.5	7
45	Charge accumulation at the interface of polymer/fullerene studied by double-pulse photocurrent responses. Solid State Communications, 2008, 148, 476-479.	1.9	7
46	PHOTOCONDUCTIVE PROPERTIES OF PVK:Alq3 BLEND FILMS STUDIED BY STEADY-STATE AND TIME-RESOLVED TRANSIENT PHOTOCURRENT SPECTRA. Chinese Journal of Polymer Science (English Edition), 2008, 26, 249.	3.8	7
47	Detectivity enhancement of double-layer organic photodetectors consisting of solution-processed interconnecting layers. Materials Letters, 2019, 243, 81-83.	2.6	7
48	Hole-transporting materials for low donor content organic solar cells: Charge transport and device performance. Organic Electronics, 2020, 76, 105480.	2.6	6
49	Flexible ITOâ€Free Organic Photovoltaics on Ultraâ€Thin Flexible Class Substrates with High Efficiency and Improved Stability. Solar Rrl, 2019, 3, 1800286.	5.8	5
50	Hole-Transporting Poly(dendrimer)s as Electron Donors for Low Donor Organic Solar Cells with Efficient Charge Transport. Macromolecules, 2020, 53, 2902-2911.	4.8	5
51			

#	Article	IF	CITATIONS
55	Rivers of Light—Ternary Exciplex Blends for High Efficiency Solutionâ€Processed Red Phosphorescent Organic Light Emitting Diodes. Advanced Functional Materials, 2022, 32, 2108128.	14.9	3
56	Investigating charge generation in polymer:non-fullerene acceptor bulk heterojunction films. Organic Electronics, 2018, 55, 177-186.	2.6	2
57	A three-dimensional multi-chromophore naphthalene diimide acceptor for polymer bulk heterojunction solar cells. Synthetic Metals, 2020, 268, 116505.	3.9	2
58	Large area monolithic organic solar cells. Proceedings of SPIE, 2012, , .	0.8	1
59	Title is missing!. Chinese Journal of Polymer Science (English Edition), 2006, 24, 553.	3.8	Ο
60	9,9′-Bifluorenylidene-diketopyrrolopyrrole donors for non-polymeric solution processed solar cells. Synthetic Metals, 2019, 250, 79-87.	3.9	0
61	Power losses in conventional and inverted non-polymeric donor:fullerene bulk heterojunction solar cells - The role of vertical phase separation in BQR:PC71BM blends. Organic Electronics, 2022, 108, 106594.	2.6	0