
NadÄ>žda ŽilkovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10192264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrogenation of CO2 on Nanostructured Cu/FeOx Catalysts: The Effect of Morphology and Cu Load on Selectivity. Catalysts, 2022, 12, 516.	3.5	3
2	Hydrodehalogenation of organohalides by Et ₃ SiH catalysed by group 4 metal complexes and B(C ₆ F ₅) ₃ . Dalton Transactions, 2020, 49, 2771-2775.	3.3	10
3	10-ring Zeolites: Synthesis, characterization and catalytic applications. Catalysis Today, 2019, 324, 3-14.	4.4	23
4	Novel approach towards Al-rich AFI for catalytic application. Applied Catalysis A: General, 2019, 577, 62-68.	4.3	2
5	Metathesis of cardanol over ammonium tagged Hoveyda-Grubbs type catalyst supported on SBA-15. Catalysis Today, 2018, 304, 127-134.	4.4	13
6	MoO3 on zeolites MCM-22, MCM-56 and 2D-MFI as catalysts for 1-octene metathesis. Beilstein Journal of Organic Chemistry, 2018, 14, 2931-2939.	2.2	3
7	Hydrogenation of titanocene and zirconocene bis(trimethylsilyl)acetylene complexes. Dalton Transactions, 2018, 47, 8921-8932.	3.3	11
8	The effect of UTL layer connectivity in isoreticular zeolites on the catalytic performance in toluene alkylation. Catalysis Today, 2016, 277, 55-60.	4.4	16
9	Three-dimensional 10-ring zeolites: The activities in toluene alkylation and disproportionation. Catalysis Today, 2016, 259, 97-106.	4.4	16
10	Ru complexes of Hoveyda–Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions. Beilstein Journal of Organic Chemistry, 2015, 11, 2087-2096.	2.2	19
11	Homogeneous and heterogeneous cyclopentadienyl-arene titanium catalysts for selective ethylene trimerization to 1-hexene. Journal of Organometallic Chemistry, 2015, 777, 57-66.	1.8	18
12	Metathesis of cardanol over Ru catalysts supported on mesoporous molecular sieve SBA-15. Applied Catalysis A: General, 2014, 478, 138-145.	4.3	18
13	Ru-Based Complexes with Quaternary Ammonium Tags Immobilized on Mesoporous Silica as Olefin Metathesis Catalysts. ACS Catalysis, 2014, 4, 3227-3236.	11.2	52
14	Recent Advances in Reactions of Alkylbenzenes Over Novel Zeolites: The Effects of Zeolite Structure and Morphology. Catalysis Reviews - Science and Engineering, 2014, 56, 333-402.	12.9	148
15	Catalytic applications and FTIR investigation of zeolite SSZ-33 after isomorphous substitution. Microporous and Mesoporous Materials, 2014, 194, 174-182.	4.4	6
16	The importance of channel intersections in the catalytic performance of high silica stilbite. Journal of Catalysis, 2013, 298, 84-93.	6.2	24
17	Transformation of aromatic hydrocarbons over isomorphously substituted UTL: Comparison with large and medium pore zeolites. Catalysis Today, 2013, 204, 22-29.	4.4	18
18	The effect of MFI zeolite lamellar and related mesostructures on toluene disproportionation and alkylation. Catalysis Science and Technology, 2013, 3, 2119.	4.1	74

NadÄ>žda ŽilkovÃi

#	Article	IF	CITATIONS
19	Hoveyda–Grubbs first generation type catalyst immobilized on mesoporous molecular sieves. Journal of Molecular Catalysis A, 2013, 378, 184-192.	4.8	13
20	Hoveyda–Grubbs type metathesis catalyst immobilized on mesoporous molecular sieves—The influence of pore size on the catalyst activity. Catalysis Today, 2012, 179, 123-129.	4.4	20
21	Grubbs Catalysts Immobilized on Mesoporous Molecular Sieves via Phosphine and Pyridine Linkers. ACS Catalysis, 2011, 1, 709-718.	11.2	51
22	Hoveyda–Grubbs type metathesis catalyst immobilized on mesoporous molecular sieves MCM-41 and SBA-15. Beilstein Journal of Organic Chemistry, 2011, 7, 22-28.	2.2	34
23	Post-synthesis modification of TUN zeolite: Textural, acidic and catalytic properties. Catalysis Today, 2011, 168, 63-70.	4.4	17
24	SBA-15 Immobilized Ruthenium Carbenes as Catalysts for Ring Closing Metathesis and Ring Opening Metathesis Polymerization. Topics in Catalysis, 2010, 53, 200-209.	2.8	27
25	Aromatic Transformations Over Mesoporous ZSM-5: Advantages and Disadvantages. Topics in Catalysis, 2010, 53, 1457-1469.	2.8	37
26	The role of the zeolite channel architecture and acidity on the activity and selectivity in aromatic transformations: The effect of zeolite cages in SSZ-35 zeolite. Journal of Catalysis, 2009, 266, 79-91.	6.2	96
27	Transformation of Vegetable Oils into Hydrocarbons over Mesoporous-Alumina-Supported CoMo Catalysts. Topics in Catalysis, 2009, 52, 161-168.	2.8	161
28	Alkaline Modification of MCM-22 to a 3D Interconnected Pore System and its Application in Toluene Disproportionation and Alkylation. Topics in Catalysis, 2009, 52, 1190-1202.	2.8	59
29	Molybdenum oxide catalysts for metathesis of higher 1-alkenes via supporting MoO2(acetylacetonate)2 and MoO2(glycolate)2 on SBA-15 mesoporous molecular sieves. Applied Catalysis A: General, 2009, 359, 129-135.	4.3	42
30	The Role of Crystallization Parameters for the Synthesis of Germanosilicate with UTL Topology. Chemistry - A European Journal, 2008, 14, 10134-10140.	3.3	37
31	Hydrotreating catalysts supported on organized mesoporous alumina: Optimization of Mo deposition and promotional effects of Co and Ni. Applied Catalysis A: General, 2008, 351, 93-101.	4.3	33
32	Transformations of aromatic hydrocarbons over zeolites. Research on Chemical Intermediates, 2008, 34, 439-454.	2.7	23
33	Synthesis, Characterization and Catalytic Applications of Organized Mesoporous Aluminas. Catalysis Reviews - Science and Engineering, 2008, 50, 222-286.	12.9	231
34	Molecular sieve catalysts for metathesis reactions. Studies in Surface Science and Catalysis, 2008, 174, 61-66.	1.5	2
35	New Templating Route for Synthesis of Mesoporous Alumina. Collection of Czechoslovak Chemical Communications, 2008, 73, 1125-1131.	1.0	2
36	Characterization of textural and surface properties of mesoporous metathesis catalysis. Studies in Surface Science and Catalysis, 2007, 170, 1145-1152.	1.5	11

Nadä>žda ŽilkovÃi

#	Article	IF	CITATIONS
37	Re(VII) oxide on mesoporous alumina of different types—Activity in the metathesis of olefins and their oxygen-containing derivatives. Applied Catalysis A: General, 2007, 320, 56-63.	4.3	28
38	Rhenium oxide supported on organized mesoporous alumina — A highly active and versatile catalyst for alkene, diene, and cycloalkene metathesis. Applied Catalysis A: General, 2006, 302, 193-200.	4.3	48
39	Porosity of micro/mesoporous composites. Microporous and Mesoporous Materials, 2006, 92, 154-160.	4.4	49
40	Synthesis of organized mesoporous alumina templated with ionic liquids. Microporous and Mesoporous Materials, 2006, 95, 176-179.	4.4	62
41	Metathesis of 1-octene over MoO3 supported on mesoporous molecular sieves: The influence of the support architecture. Microporous and Mesoporous Materials, 2006, 96, 44-54.	4.4	77
42	Microporous and mesoporous molecular sieves for alkylation of toluene with olefins. Studies in Surface Science and Catalysis, 2005, 158, 1945-1952.	1.5	5
43	Synthesis and characterization of novel zeolites MCM-58 and MCM-68. Studies in Surface Science and Catalysis, 2005, 158, 59-66.	1.5	7
44	MCM-41 anchored Schrock catalyst Mo(CHCMe2Ph)(N-2,6-i-Pr2C6H3)[OCMe(CF3)2]2-activity in 1-heptene metathesis and cross-metathesis reactions. Journal of Molecular Catalysis A, 2005, 232, 53-58.	4.8	42
45	Catalytic activity of micro/mesoporous composites in toluene alkylation with propylene. Applied Catalysis A: General, 2005, 281, 85-91.	4.3	68
46	Introduction of tin into mesoporous molecular sieves for oxidation of adamantanone. Studies in Surface Science and Catalysis, 2005, 156, 779-786.	1.5	9
47	Oxidation of adamantanone and norcamphor over tin containing mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2005, 158, 1589-1596.	1.5	12
48	Solvent-Induced Textural Changes of As-Synthesized Mesoporous Alumina, As Reported by Spin Probe Electron Spin Resonance Spectroscopy. Langmuir, 2005, 21, 2591-2597.	3.5	7
49	Characterization of basic sites in zeolites for toluene side-chain alkylation with methanol. Studies in Surface Science and Catalysis, 2005, , 1629-1636.	1.5	0
50	Rhenium Oxide Supported on Mesoporous Organised Alumina as a Catalyst for Metathesis of 1-Alkenes. Catalysis Letters, 2004, 97, 25-29.	2.6	46
51	Structural Characterization of Micellar Aggregates in Sodium Dodecyl Sulfate/Aluminum Nitrate/Urea/Water System in the Synthesis of Mesoporous Alumina. Journal of Physical Chemistry B, 2004, 108, 7735-7743.	2.6	16
52	High-Resolution Adsorption of Nitrogen on Mesoporous Alumina. Langmuir, 2004, 20, 7532-7539.	3.5	32
53	Acylation of toluene with isobutyryl chloride. Studies in Surface Science and Catalysis, 2004, , 2717-2723.	1.5	0
54	(Al)MCM-41 Molecular Sieves. Aluminium Distribution, Uniformity and Structure of Inner Surface. Collection of Czechoslovak Chemical Communications, 2003, 68, 1998-2018.	1.0	5

NadÄ>žda ŽilkovÃi

#	ARTICLE	IF	CITATIONS
55	Hybrid Catalysts for Acetylenes Polymerization Prepared by Anchoring [Rh(cod)CI]2 on MCM-41, MCM-48 and SBA-15 Mesoporous Molecular Sieves - The Effect of Support Structure on Catalytic Activity in Polymerization of Phenylacetylene and 4-Ethynyl-N-{4-[(trimethylsilyl)ethynyl]benzylidene}aniline. Collection of Czechoslovak Chemical	1.0	15
56	(Al)-ZSM-12: Synthesis and modification of acid sites. Studies in Surface Science and Catalysis, 2002, , 247-254.	1.5	6
57	Mesoporous alumina as a support for hydrodesulfurization catalysts. Studies in Surface Science and Catalysis, 2002, , 243-250.	1.5	17
58	High activity of highly loaded MoS2 hydrodesulfurization catalysts supported on organised mesoporous alumina. Catalysis Communications, 2002, 3, 151-157.	3.3	60
59	Activity and selectivity of zeolites MCM-22 and MCM-58 in the alkylation of toluene with propylene. Microporous and Mesoporous Materials, 2002, 53, 121-133.	4.4	77
60	Experimental study of the effect of Si/Al composition on the aluminum distribution in (Al)MCM-41. Microporous and Mesoporous Materials, 2001, 44-45, 259-266.	4.4	44
61	Alkylation and disproportionation of aromatic hydrocarbons over mesoporous molecular sieves. Microporous and Mesoporous Materials, 2001, 44-45, 499-507.	4.4	37
62	Nitrogen adsorption study of organised mesoporous alumina. Physical Chemistry Chemical Physics, 2001, 3, 5076-5081.	2.8	76
63	Uniformity and Ordering of Inner Walls of (Al)MCM-41. Collection of Czechoslovak Chemical Communications, 2001, 66, 567-574.	1.0	5
64	Effect of Broensted and Lewis sites in ferrierites on skeletal isomerization of n-butenes. Applied Catalysis A: General, 1999, 182, 297-308.	4.3	82
65	The Effect of Acid Sites in Skeletal Isomerization of N-Butenes over Ferrierites and Coalpo-11. , 1998, , 391-396.		1
66	Kinetic and Theoretical Study of the Effect of Molecular Sieve Structure on the Selectivity to Propylbenzenes in Alkylation of Benzene with Isopropyl Alcohol. Collection of Czechoslovak Chemical Communications, 1998, 63, 1769-1780.	1.0	7
67	Decisive role of transport rate of products for zeolite para-selectivity: Effect of coke deposition and external surface silylation on activity and selectivity of HZSM-5 in alkylation of toluene. Zeolites, 1996, 17, 265-271.	0.5	81
68	Selective synthesis of cumene and p-cymene over Al and Fe silicates with large and medium pore structures. Microporous Materials, 1996, 6, 405-414.	1.6	55
69	The Effect of Acidity of Al and Fe Silicates with MFI Structure on Benzene and Toluene Alkylation with Isopropyl Alcohol. Collection of Czechoslovak Chemical Communications, 1996, 61, 1115-1130.	1.0	3
70	Incorporation of titanium into the framework sites of Na-zeolites using TiCL4: Catalytic activity in the ammoximation of cyclohexanone to cyclohexanone oxime. Applied Catalysis A: General, 1993, 103, L1-L4.	4.3	14
71	Role of surface complexes on titanium-silicate in the ammoximation of cyclohexanone with hydrogen peroxide. Applied Catalysis A: General, 1991, 79, 105-114.	4.3	28
72	Photochemical oxidation of ethylbenzene and other hydrocarbons in the presence of cobalt(III) 2,4-pentanedionate. Collection of Czechoslovak Chemical Communications, 1984, 49, 2376-2381.	1.0	5

#	Article	IF	CITATIONS
73	An-Additions to 2,5-dimethoxy-2,5-dihydrofurans, containing electron-accepting substituents in position 3. Collection of Czechoslovak Chemical Communications, 1982, 47, 3055-3061.	1.0	1
74	Electrosyntheses of 3-acetyl- and 3-methoxycarbonyl-2,5-dimethoxy-2,5-dihydrofuranes. Collection of Czechoslovak Chemical Communications, 1982, 47, 3261-3267.	1.0	3