
Ramesh R Vetukuri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1019224/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant Growth-Promoting Activity of Pseudomonas aeruginosa FG106 and Its Ability to Act as a Biocontrol Agent against Potato, Tomato and Taro Pathogens. Biology, 2022, 11, 140.	1.3	31
2	Optimization of Culture Conditions for Zinc Phosphate Solubilization by Aspergillus sp. Using Response Surface Methodology. Journal of Soil Science and Plant Nutrition, 2022, 22, 1009-1018.	1.7	3
3	Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress. Planta, 2022, 255, 20.	1.6	55
4	Effect of Biochar and Microbial Inoculation on P, Fe, and Zn Bioavailability in a Calcareous Soil. Processes, 2022, 10, 343.	1.3	12
5	Optimization of Biofertilizer Formulation for Phosphorus Solubilizing by Pseudomonas fluorescens Ur21 via Response Surface Methodology. Processes, 2022, 10, 650.	1.3	9
6	Biodiversity of the Genus Trichoderma in the Rhizosphere of Coffee (Coffea arabica) Plants in Ethiopia and Their Potential Use in Biocontrol of Coffee Wilt Disease. Crops, 2022, 2, 120-141.	0.6	10
7	RNA-Seq Provides Novel Genomic Resources for Noug (Guizotia abyssinica) and Reveals Microsatellite Frequency and Distribution in Its Transcriptome. Frontiers in Plant Science, 2022, 13, .	1.7	9
8	Comparative Small RNA and Degradome Sequencing Provides Insights into Antagonistic Interactions in the Biocontrol Fungus Clonostachys rosea. Applied and Environmental Microbiology, 2022, 88, .	1.4	5
9	A Quantitative Luminol-Based Assay for ROS Burst Detection in Potato Leaves in Response to Biotic Stimuli. Methods in Molecular Biology, 2022, , 395-402.	0.4	1
10	Spray-Induced Gene Silencing to Study Gene Function in Phytophthora. Methods in Molecular Biology, 2022, , 459-474.	0.4	1
11	Characterization of Environmental Effects on Flowering and Plant Architecture in an Everbearing Strawberry F1-Hybrid by Meristem Dissection and Gene Expression Analysis. Horticulturae, 2022, 8, 626.	1.2	2
12	Spray-induced gene silencing: an innovative strategy for plant trait improvement and disease control. Crop Breeding and Applied Biotechnology, 2021, 21, .	0.1	16
13	Editorial: Genomics and Effectomics of Filamentous Plant Pathogens. Frontiers in Genetics, 2021, 12, 648690.	1.1	2
14	When is it biological control? A framework of definitions, mechanisms, and classifications. Journal of Pest Science, 2021, 94, 665-676.	1.9	86
15	Biological control of strawberry crown rot, root rot and grey mould by the beneficial fungus Aureobasidium pullulans. BioControl, 2021, 66, 535-545.	0.9	16
16	Exogenous melatonin-stimulated transcriptomic alterations of Davidia involucrata seedlings under drought stress. Trees - Structure and Function, 2021, 35, 1025-1038.	0.9	20
17	Larval response to frass and guaiacol: detection of an attractant produced by bacteria from Spodoptera littoralis frass. Journal of Pest Science, 2021, 94, 1105-1118.	1.9	10
18	Haustorium formation and a distinct biotrophic transcriptome characterize infection of <i>Nicotiana benthamiana</i> by the tree pathogen <i>Phytophthora kernoviae</i> . Molecular Plant Pathology, 2021, 22, 954-968.	2.0	5

Ramesh R Vetukuri

#	Article	IF	CITATIONS
19	Spray-Induced Gene Silencing as a Potential Tool to Control Potato Late Blight Disease. Phytopathology, 2021, 111, 2168-2175.	1.1	32
20	Comparison of two commercial recirculated aquacultural systems and their microbial potential in plant disease suppression. BMC Microbiology, 2021, 21, 205.	1.3	6
21	Draft genome assemblies for tree pathogens Phytophthora pseudosyringae and Phytophthora boehmeriae. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	4
22	Optimization of Culture Conditions and Production of Bio-Fungicides from Trichoderma Species under Solid-State Fermentation Using Mathematical Modeling. Microorganisms, 2021, 9, 1675.	1.6	23
23	A fast, nondestructive method for the detection of disease-related lesions and wounded leaves. BioTechniques, 2021, 71, 425-430.	0.8	5
24	Identification of Unique Peptides for SARS-CoV-2 Diagnostics and Vaccine Development by an In Silico Proteomics Approach. Frontiers in Immunology, 2021, 12, 725240.	2.2	12
25	Role of Dicer-Dependent RNA Interference in Regulating Mycoparasitic Interactions. Microbiology Spectrum, 2021, 9, e0109921.	1.2	12
26	Interactions between Biochar and Compost Treatment and Mycorrhizal Fungi to Improve the Qualitative Properties of a Calcareous Soil under Rhizobox Conditions. Agriculture (Switzerland), 2021, 11, 993.	1.4	7
27	Harnessing the Potential of Symbiotic Endophytic Fungi and Plant Growth-Promoting Rhizobacteria to Enhance Soil Quality in Saline Soils. Processes, 2021, 9, 1810.	1.3	5
28	Effect of RNA silencing suppression activity of chrysanthemum virus B p12 protein on small RNA species. Archives of Virology, 2020, 165, 2953-2959.	0.9	3
29	Differential Gene Expression Analysis of Wheat Breeding Lines Reveal Molecular Insights in Yellow Rust Resistance under Field Conditions. Agronomy, 2020, 10, 1888.	1.3	8
30	Horizontal Gene Transfer and Tandem Duplication Shape the Unique CAZyme Complement of the Mycoparasitic Oomycetes Pythium oligandrum and Pythium periplocum. Frontiers in Microbiology, 2020, 11, 581698.	1.5	10
31	Dominance of Mating Type A1 and Indication of Epigenetic Effects During Early Stages of Mating in Phytophthora infestans. Frontiers in Microbiology, 2020, 11, 252.	1.5	9
32	Monitoring and discrimination of Pandemis moths in apple orchards using semiochemicals, wing pattern morphology and DNA barcoding. Crop Protection, 2020, 132, 105110.	1.0	5
33	The presence of Phytophthora infestans in the rhizosphere of a wild Solanum species may contribute to off-season survival and pathogenicity. Applied Soil Ecology, 2020, 148, 103475.	2.1	7
34	Transient expression and purification of β-caryophyllene synthase in <i>Nicotiana benthamiana</i> to produce β-caryophyllene in vitro. PeerJ, 2020, 8, e8904.	0.9	9
35	Lignocellulolytic and Chitinolytic Glycoside Hydrolases: Structure, Catalytic Mechanism, Directed Evolution and Industrial Implementation. , 2020, , 97-127.		0
36	Efficient RNA silencing suppression activity of Potato Mop-Top Virus 8K protein is driven by variability and positive selection. Virology, 2019, 535, 111-121.	1.1	8

Ramesh R Vetukuri

#	Article	IF	CITATIONS
37	Transcriptomic Responses of Dove Tree (Davidia involucrata Baill.) to Heat Stress at the Seedling Stage. Forests, 2019, 10, 656.	0.9	9
38	Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness. Journal of Experimental Botany, 2018, 69, 1415-1432.	2.4	120
39	Genome Sequence Resource for the Oomycete Taro Pathogen Phytophthora colocasiae. Molecular Plant-Microbe Interactions, 2018, 31, 903-905.	1.4	8
40	Screening of alternative products for integrated pest management of cucurbit powdery mildew in Sweden. European Journal of Plant Pathology, 2018, 150, 127-138.	0.8	22
41	Draft Genome Sequence for the Tree PathogenPhytophthora plurivora. Genome Biology and Evolution, 2018, 10, 2432-2442.	1.1	19
42	Draft Genome Sequence of the Mycoparasitic Oomycete Pythium periplocum Strain CBS 532.74. Genome Announcements, 2017, 5, .	0.8	12
43	Draft genome of the oomycete pathogen Phytophthora cactorum strain LV007 isolated from European beech (Fagus sylvatica). Genomics Data, 2017, 12, 155-156.	1.3	18
44	Phytophthora infestans effector Pi14054 is a novel candidate suppressor of host silencing mechanisms. European Journal of Plant Pathology, 2017, 149, 771-777.	0.8	17
45	Draft Genome Sequence of the Mycoparasitic Oomycete <i>Pythium oligandrum</i> Strain CBS 530.74. Genome Announcements, 2017, 5, .	0.8	18
46	<i>Phytophthora infestans</i> Argonaute 1 binds micro <scp>RNA</scp> and small <scp>RNA</scp> s from effector genes and transposable elements. New Phytologist, 2016, 211, 993-1007.	3.5	41
47	The occurrence of pathogen suppressive soils in Sweden in relation to soil biota, soil properties, and farming practices. Applied Soil Ecology, 2016, 107, 57-65.	2.1	78
48	Real-time PCR for detection and quantification, and histological characterization of Neonectria ditissima in apple trees. Trees - Structure and Function, 2016, 30, 1111-1125.	0.9	17
49	Importin-α-Mediated Nucleolar Localization of Potato Mop-Top Virus TRIPLE GENE BLOCK1 (TGB1) Protein Facilitates Virus Systemic Movement, Whereas TGB1 Self-Interaction Is Required for Cell-to-Cell Movement in <i>Nicotiana benthamiana</i> . Plant Physiology, 2015, 167, 738-752.	2.3	35
50	Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans. Journal of Experimental Botany, 2015, 66, 2785-2794.	2.4	124
51	Retromer Contributes to Immunity-Associated Cell Death in Arabidopsis. Plant Cell, 2015, 27, 463-479.	3.1	67
52	Fragmentation of tRNA in Phytophthora infestans asexual life cycle stages and during host plant infection. BMC Microbiology, 2014, 14, 308.	1.3	24
53	A viral transcription factor exhibits antiviral RNA silencing suppression activity independent of its nuclear localization. Journal of General Virology, 2014, 95, 2831-2837.	1.3	16
54	Phenotypic diversification by gene silencing in <i>Phytophthora</i> plant pathogens. Communicative and Integrative Biology, 2013, 6, e25890.	0.6	9

#	Article	IF	CITATIONS
55	Can silencing of transposons contribute to variation in effector gene expression in <i><i>Phytophthora infestans</i></i> ?. Mobile Genetic Elements, 2012, 2, 110-114.	1.8	43
56	Evidence for Small RNAs Homologous to Effector-Encoding Genes and Transposable Elements in the Oomycete Phytophthora infestans. PLoS ONE, 2012, 7, e51399.	1.1	79
57	Silencing of the PiAvr3a effector-encoding gene from Phytophthora infestans by transcriptional fusion to a short interspersed element. Fungal Biology, 2011, 115, 1225-1233.	1.1	18
58	Evidence for involvement of Dicerâ€like, Argonaute and histone deacetylase proteins in gene silencing in <i>Phytophthora infestans</i> . Molecular Plant Pathology, 2011, 12, 772-785.	2.0	64
59	<i>Phytophthora infestans</i> effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9909-9914.	3.3	412