
## hanzade acma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10191639/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Combustion characteristics of different biomass materials. Energy Conversion and Management, 2003, 44, 155-162.                                                            | 4.4 | 178       |
| 2  | Calorific value estimation of biomass from their proximate analyses data. Renewable Energy, 2010, 35, 170-173.                                                             | 4.3 | 178       |
| 3  | Interaction between biomass and different rank coals during co-pyrolysis. Renewable Energy, 2010, 35, 288-292.                                                             | 4.3 | 173       |
| 4  | Effect of heating rate on the pyrolysis yields of rapeseed. Renewable Energy, 2006, 31, 803-810.                                                                           | 4.3 | 146       |
| 5  | Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis. Fuel, 2007, 86, 373-380.                                                    | 3.4 | 132       |
| 6  | Comparison of the thermal reactivities of isolated lignin and holocellulose during pyrolysis. Fuel<br>Processing Technology, 2010, 91, 759-764.                            | 3.7 | 131       |
| 7  | Production of fuel briquettes from olive refuse and paper mill waste. Fuel Processing Technology, 2000, 68, 23-31.                                                         | 3.7 | 106       |
| 8  | Kinetic modelling of RDF pyrolysis: Model-fitting and model-free approaches. Waste Management, 2016,<br>48, 275-284.                                                       | 3.7 | 105       |
| 9  | Effect of co-combustion on the burnout of lignite/biomass blends: A Turkish case study. Waste<br>Management, 2008, 28, 2077-2084.                                          | 3.7 | 96        |
| 10 | Gasification of biomass chars in steam–nitrogen mixture. Energy Conversion and Management, 2006,<br>47, 1004-1013.                                                         | 4.4 | 89        |
| 11 | Fuel briquettes from biomass–lignite blends. Fuel Processing Technology, 2001, 72, 1-8.                                                                                    | 3.7 | 84        |
| 12 | The role of particle size in the non-isothermal pyrolysis of hazelnut shell. Journal of Analytical and Applied Pyrolysis, 2006, 75, 211-216.                               | 2.6 | 75        |
| 13 | Co-combustion of low rank coal/waste biomass blends using dry air or oxygen. Applied Thermal Engineering, 2013, 50, 251-259.                                               | 3.0 | 61        |
| 14 | Effect of mineral matter on the reactivity of lignite chars. Energy Conversion and Management, 2001, 42, 11-20.                                                            | 4.4 | 53        |
| 15 | Controlling the excess heat from oxy-combustion of coal by blending with biomass. Fuel Processing Technology, 2010, 91, 1569-1575.                                         | 3.7 | 53        |
| 16 | Effect of biomass on temperatures of sintering and initial deformation of lignite ash. Fuel, 2010, 89, 3063-3068.                                                          | 3.4 | 52        |
| 17 | Production of biobriquettes from carbonized brown seaweed. Fuel Processing Technology, 2013, 106, 33-40.                                                                   | 3.7 | 50        |
| 18 | A study to predict pyrolytic behaviors of refuse-derived fuel (RDF): Artificial neural network application. Journal of Analytical and Applied Pyrolysis, 2016, 122, 84-94. | 2.6 | 50        |

HANZADE ACMA

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effect of lignite properties on reactivity of lignite. Energy Conversion and Management, 2001, 42, 613-626.                                                                                    | 4.4 | 44        |
| 20 | Limits of variations on the structure and the fuel characteristics of sunflower seed shell through torrefaction. Fuel Processing Technology, 2016, 144, 197-202.                               | 3.7 | 38        |
| 21 | ls torrefaction of polysaccharides-rich biomass equivalent to carbonization of lignin-rich biomass?.<br>Bioresource Technology, 2016, 200, 201-207.                                            | 4.8 | 36        |
| 22 | Activation energy prediction of biomass wastes based on different neural network topologies. Fuel, 2018, 220, 535-545.                                                                         | 3.4 | 36        |
| 23 | Combinations of synergistic interactions and additive behavior during the co-oxidation of chars from lignite and biomass. Fuel Processing Technology, 2008, 89, 176-182.                       | 3.7 | 35        |
| 24 | Combustion reactivity of different rank coals. Energy Conversion and Management, 2002, 43, 459-465.                                                                                            | 4.4 | 31        |
| 25 | Interpretation of biomass gasification yields regarding temperature intervals under nitrogen–steam<br>atmosphere. Fuel Processing Technology, 2007, 88, 417-425.                               | 3.7 | 30        |
| 26 | Effect of biomass on burnouts of Turkish lignites during co-firing. Energy Conversion and Management, 2009, 50, 2422-2427.                                                                     | 4.4 | 29        |
| 27 | Thermal reactivity of rapeseed (Brassica napus L.) under different gas atmospheres. Bioresource<br>Technology, 2008, 99, 237-242.                                                              | 4.8 | 27        |
| 28 | Does carbonization avoid segregation of biomass and lignite during co-firing? Thermal analysis study.<br>Fuel Processing Technology, 2015, 137, 312-319.                                       | 3.7 | 26        |
| 29 | Thermogravimetric Investigation on the Thermal Reactivity of Biomass During Slow Pyrolysis.<br>International Journal of Green Energy, 2009, 6, 333-342.                                        | 2.1 | 25        |
| 30 | INVESTIGATION OF THE RELATION BETWEEN CHEMICAL COMPOSITION AND ASH FUSION TEMPERATURES FOR SOKE TURKISH LIGNITES. Petroleum Science and Technology, 1993, 11, 1231-1249.                       | 0.2 | 23        |
| 31 | Mobilization of some trace elements from ashes of Turkish lignites in rain water. Fuel, 2011, 90, 3447-3455.                                                                                   | 3.4 | 22        |
| 32 | Effect of demineralization on the reactivity of lignites. Thermochimica Acta, 2000, 362, 131-135.                                                                                              | 1.2 | 21        |
| 33 | Investigation of the Combustion Characteristics of Zonguldak Bituminous Coal Using DTA and DTG.<br>Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2006, 28, 135-147. | 1.2 | 16        |
| 34 | Combustion characteristics of sodium-free pyrolytic char from hazelnut shell. Fuel Processing<br>Technology, 2012, 96, 169-174.                                                                | 3.7 | 16        |
| 35 | Does blending the ashes of chestnut shell and lignite create synergistic interaction on ash fusion temperatures?. Fuel Processing Technology, 2015, 140, 165-171.                              | 3.7 | 16        |
| 36 | Effect of mineral matter on the reactivity of lignite. Thermochimica Acta, 1999, 342, 79-84.                                                                                                   | 1.2 | 15        |

HANZADE ACMA

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Burning characteristics of chemically isolated biomass ingredients. Energy Conversion and Management, 2011, 52, 746-751.                                                                                  | 4.4 | 14        |
| 38 | Mineralogical characterization of chemically isolated ingredients from biomass. Energy Conversion and Management, 2014, 77, 221-226.                                                                      | 4.4 | 13        |
| 39 | Properties of Biochars Obtained from RDF by Carbonization: Influences of Devolatilization Severity.<br>Waste and Biomass Valorization, 2017, 8, 539-547.                                                  | 1.8 | 13        |
| 40 | Unburnt carbon and ashing behavior for slow burning of lignite under oxygen-enriched combustion conditions. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2019, 41, 1326-1335. | 1.2 | 11        |
| 41 | Effects of fragmentation and particle size on the fuel properties of hazelnut shells. Fuel, 2013, 112, 326-330.                                                                                           | 3.4 | 10        |
| 42 | Are medium range temperatures in Drop Tube Furnace really ineffective?. Fuel, 2013, 105, 338-344.                                                                                                         | 3.4 | 10        |
| 43 | Effects of torrefaction on lignin-rich biomass (hazelnut shell): Structural variations. Journal of<br>Renewable and Sustainable Energy, 2017, 9, .                                                        | 0.8 | 10        |
| 44 | Production of fuel briquettes from rice husk–lignite blends. Environmental Progress and Sustainable<br>Energy, 2017, 36, 742-748.                                                                         | 1.3 | 10        |
| 45 | Effects of Dilute Phosphoric Acid Treatment on Structure and Burning Characteristics of<br>Lignocellulosic Biomass. Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141,          | 1.4 | 10        |
| 46 | Synergistic Interactions During Cocombustion of Lignite, Biomass, and Their Chars. Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141, .                                         | 1.4 | 10        |
| 47 | Combustion Characteristics of Blends of Lignite and Bituminous Coal with Different Binder<br>Materials. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 2000, 22, 325-332.        | 0.5 | 9         |
| 48 | THERMAL ANALYSIS OF DIFFERENT FOSSIL FUELS. Petroleum Science and Technology, 1993, 11, 1611-1627.                                                                                                        | 0.2 | 7         |
| 49 | Effect of mineral matter on the combustion curve of chars. Thermochimica Acta, 1996, 277, 65-73.                                                                                                          | 1.2 | 7         |
| 50 | Effect of the Heating Rate on the Morphology of the Pyrolytic Char From Hazelnut Shell.<br>International Journal of Green Energy, 2009, 6, 508-511.                                                       | 2.1 | 7         |
| 51 | Gold recovery from chloride solutions using fallen leaves. Environmental Chemistry Letters, 2011, 9, 47-53.                                                                                               | 8.3 | 7         |
| 52 | Combustion characteristics of torrefied biomass materials to generate power. , 2016, , .                                                                                                                  |     | 7         |
| 53 | Comparison of the fuel properties and the combustion behavior of PET bottle caps with lignite. Energy Procedia, 2017, 136, 22-26.                                                                         | 1.8 | 7         |
| 54 | Synergistic Investigation for Co-Combustion of Biochars and Lignite—Thermogravimetric Analysis<br>Approach. Journal of Thermal Science and Engineering Applications, 2019, 11, .                          | 0.8 | 7         |

HANZADE ACMA

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Unburnt Carbon From Oxygen-Enriched Combustion of Low-Quality Fuels at Low Temperatures.<br>Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141, .                                   | 1.4 | 6         |
| 56 | Coâ€combustion of lignite with sewage sludge and refuseâ€derived fuel. Environmental Progress and<br>Sustainable Energy, 2019, 38, e13307.                                                                   | 1.3 | 6         |
| 57 | Slow-Pyrolysis and -Oxidation of Different Biomass Fuel Samples. Journal of Environmental Science<br>and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2006, 41, 1909-1920.      | 0.9 | 5         |
| 58 | Comparison of the combustion behaviours of agricultural wastes under dry air and oxygen. , 2012, , .                                                                                                         |     | 4         |
| 59 | Burnout characteristics during co-combustion of binary lignite blends. Journal of the Energy<br>Institute, 2012, 85, 1-6.                                                                                    | 2.7 | 2         |
| 60 | Characterization of the Fuel Properties of Chimney Soots from Different Sources. Waste and Biomass Valorization, 2020, 11, 2017-2026.                                                                        | 1.8 | 2         |
| 61 | Which One Does Better Predict the Heating Value of Biomass?—Dry Based or As-Received Based<br>Proximate Analysis Results?. Journal of Energy Resources Technology, Transactions of the ASME, 2019,<br>141, . | 1.4 | 2         |
| 62 | Effects of Pretreatment Outside of Torrefaction Range on Combustion Characteristics of Chars From<br>Lignocellulosic Biomass. Journal of Thermal Science and Engineering Applications, 2019, 11, .           | 0.8 | 1         |
| 63 | Burning Characteristics and the Fuel Properties of the Dry-Carbonization Chars of Sewage Sludge.<br>Journal of Thermal Science and Engineering Applications, 2019, 11, .                                     | 0.8 | 1         |
| 64 | Combustion kinetics of lignite preheated under oxygen-enriched conditions. Energy and Environment, 2020, 31, 813-824.                                                                                        | 2.7 | 1         |
| 65 | Analysis of Four Industrial Coal-Fired Fluidized Bed Systems. Energy Sources Part A Recovery,<br>Utilization, and Environmental Effects, 1997, 19, 433-444.                                                  | 0.5 | 0         |
| 66 | Isolation of Macromolecular Polymeric Ingredients from Waste Biomass Materials and their Characterization. Materials Today: Proceedings, 2016, 3, 681-685.                                                   | 0.9 | 0         |
| 67 | Bioactivity of Glass and Glass-Seramic in the System SiO2–CaO–Al2O3–P2O5–Na2O–MgO–CaF2.<br>Advanced Science Letters, 2013, 19, 3328-3332.                                                                    | 0.2 | 0         |
| 68 | Experimental and Statistical Studies on the Preparation of Activated Carbons from Chestnut Shell.<br>Advanced Science Letters, 2013, 19, 3361-3365.                                                          | 0.2 | 0         |