
Masaki Ohtawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1018988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of (â^')-11- <i>O</i> -Debenzoyltashironin: Neurotrophic Sesquiterpenes Cause Hyperexcitation. Journal of the American Chemical Society, 2017, 139, 9637-9644.	6.6	54
2	Synthetic, Mechanistic, and Biological Interrogation of <i>Ginkgo biloba</i> Chemical Space En Route to (â^')-Bilobalide. Journal of the American Chemical Society, 2020, 142, 18599-18618.	6.6	40
3	Concise asymmetric synthesis of (â^')-bilobalide. Nature, 2019, 575, 643-646.	13.7	39
4	Enantioselective total synthesis of atpenin A5. Journal of Antibiotics, 2009, 62, 289-294.	1.0	33
5	Total synthesis of pyripyropene A. Tetrahedron, 2011, 67, 8195-8203.	1.0	30
6	Synthesis and structure–activity relationship of pyripyropene A derivatives as potent and selective acyl-CoA:cholesterol acyltransferase 2 (ACAT2) inhibitors: Part 1. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1285-1287.	1.0	26
7	Synthesis and biological activity of 5-(4-methoxyphenyl)-oxazole derivatives. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 313-316.	1.0	23
8	The total synthesis and biological evaluation of nafuredin-Î ³ and its analogues. Tetrahedron, 2008, 64, 8117-8127.	1.0	21
9	Synthesis and structure–activity relationship of pyripyropene A derivatives as potent and selective acyl-CoA:cholesterol acyltransferase 2 (ACAT2) inhibitors: Part 3. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3798-3801.	1.0	21
10	Selectivity of Pyripyropene Derivatives in Inhibition toward Acyl-CoA:cholesterol Acyltransferase 2 Isozyme. Journal of Antibiotics, 2008, 61, 503-508.	1.0	20
11	Potentiation of Bleomycin in Jurkat Cells by Fungal Pycnidione. Biological and Pharmaceutical Bulletin, 2012, 35, 18-28.	0.6	20
12	Synthesis and structure–activity relationship of pyripyropene A derivatives as potent and selective acyl-CoA:cholesterol acyltransferase 2 (ACAT2) inhibitors: Part 2. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2659-2662.	1.0	20
13	Simplifungin and Valsafungins, Antifungal Antibiotics of Fungal Origin. Journal of Organic Chemistry, 2016, 81, 7373-7383.	1.7	18
14	New Pyripyropene A Derivatives, Highly SOAT2-Selective Inhibitors, Improve Hypercholesterolemia and Atherosclerosis in Atherogenic Mouse Models. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 297-307.	1.3	17
15	Pharmacological characterization of the neurotrophic sesquiterpene jiadifenolide reveals a non-convulsant signature and potential for progression in neurodegenerative disease studies. Biochemical Pharmacology, 2018, 155, 61-70.	2.0	17
16	Scopranones with Two Atypical Scooplike Moieties Produced by <i>Streptomyces</i> sp. BYK-11038. Organic Letters, 2017, 19, 5980-5983.	2.4	16
17	9-(2-C-Cyano-2-deoxy-β-d-arabino- pentofuranosyl)guanine, a Potential Antitumor Agent against B-Lymphoma Infected with Kaposi's Sarcoma-Associated Herpesvirus. Journal of Medicinal Chemistry, 2007, 50, 2007-2010.	2.9	12
18	Stereoselective Total Synthesis of Atpenins A4 and B, Harzianopyridone, and NBRI23477 B. Chemical and Pharmaceutical Bulletin, 2012, 60, 898-906.	0.6	10

MASAKI OHTAWA

#	Article	IF	CITATIONS
19	In vitro metabolism of pyripyropene A and ACAT inhibitory activity of its metabolites. Journal of Antibiotics, 2015, 68, 27-34.	1.0	9
20	One-Pot Î ³ -Lactonization of Homopropargyl Alcohols via Intramolecular Ketene Trapping. Organic Letters, 2021, 23, 2831-2835.	2.4	9
21	Design, synthesis, and biological evaluation of air-stable nafuredin-Î ³ analogs as complex l inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 932-943.	1.4	8
22	Design and Synthesis of Aâ€Ring Simplified Pyripyropeneâ€A Analogues as Potent and Selective Synthetic SOAT2 Inhibitors. ChemMedChem, 2018, 13, 411-421.	1.6	8
23	Regioselective Mono-Deprotection of Di- <i>tert</i> -butylsilylene Acetal Derived from 1,3-Diol with Ammonium Fluoride. Bulletin of the Chemical Society of Japan, 2014, 87, 113-118.	2.0	6
24	Synthesis and Structural Revision of Cyslabdan. Chemical and Pharmaceutical Bulletin, 2016, 64, 1370-1377.	0.6	6
25	Total Synthesis and Absolute Configuration of Simpotentin, a Potentiator of Amphotericin B Activity. Organic Letters, 2019, 21, 5596-5599.	2.4	6
26	Total synthesis of 4-epi-atpenin A5 as a potent nematode complex II inhibitor. Tetrahedron, 2019, 75, 3178-3185.	1.0	6
27	Deprotection of silyl ethers by using SO3H silica gel: Application to sugar, nucleoside, and alkaloid derivatives. Tetrahedron, 2017, 73, 5425-5429.	1.0	5
28	Structure-Activity Relationship Study and Total Synthesis of Pyripyropene A as a Potent ACAT2-Selective Inhibitor. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 830-843.	0.0	3
29	Synthesis and Evaluation of Habiterpenol Analogs. Chemical and Pharmaceutical Bulletin, 2022, 70, 261-268.	0.6	3
30	Structure–activity relationship studies of atpenin A5 analogs with chemical modification of the side chain moiety. Tetrahedron Letters, 2019, 60, 1037-1042.	0.7	2
31	Repair of DNA damage induced by the novel nucleoside analogue CNDAG through homologous recombination. Cancer Chemotherapy and Pharmacology, 2020, 85, 661-672.	1.1	2
32	Development of a new air-stable structure-simplified nafuredin-Î ³ analog as a potent and selective nematode complex I inhibitor. Journal of Antibiotics, 2017, 70, 647-654.	1.0	1
33	Mixture of clopidogrel bisulfate and magnesium oxide tablets reduces clopidogrel dose administered through a feeding tube. Journal of Pharmaceutical Health Care and Sciences, 2021, 7, 18.	0.4	1