Willy Tegel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10189070/publications.pdf

Version: 2024-02-01

			212478	1	00535
74		5,181	28		70
papers	}	citations	h-index		g-index
				_	
76		76	76		6111
76		76	76		6111
all doc	8	docs citations	times ranked		citing authors

#	Article	lF	Citations
1	Global tree-ring response and inferred climate variation following the mid-thirteenth century Samalas eruption. Climate Dynamics, 2022, 59, 531-546.	1.7	9
2	Regional Patterns of Late Medieval and Early Modern European Building Activity Revealed by Felling Dates. Frontiers in Ecology and Evolution, 2022, 9, .	1.1	8
3	Dendroarchaeology in Europe. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	12
4	Regional Drought Conditions Control Quercus brantii Lindl. Growth within Contrasting Forest Stands in the Central Zagros Mountains, Iran. Forests, 2022, 13, 495.	0.9	2
5	Understanding the performance of truffle dogs. Journal of Veterinary Behavior: Clinical Applications and Research, 2022, 52-53, 8-13.	0.5	5
6	Jet stream position explains regional anomalies in European beech forest productivity and tree growth. Nature Communications, 2022, 13, 2015.	5.8	8
7	Rapid 14C excursion at 3372-3371 BCE not observed at two different locations. Nature Communications, 2021, 12, 712.	5. 8	8
8	Recent European drought extremes beyond Common Era background variability. Nature Geoscience, 2021, 14, 190-196.	5.4	183
9	Historical Forest Management Practices Influence Tree-Ring Based Climate Reconstructions. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	2
10	Eco-archaeological excavation techniques reveal snapshots of subterranean truffle growth. Fungal Biology, 2021, 125, 951-961.	1.1	3
11	Forest Historyâ€"New Perspectives for an Old Discipline. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	4
12	Tree mortality of European beech and Norway spruce induced by 2018-2019 hot droughts in central Germany. Agricultural and Forest Meteorology, 2021, 307, 108482.	1.9	86
13	Tree rings reveal dry conditions during Charlemagne's Fossa Carolina construction in 793 CE. Quaternary Science Reviews, 2020, 227, 106040.	1.4	6
14	Higher groundwater levels in western Europe characterize warm periods in the Common Era. Scientific Reports, 2020, 10, 16284.	1.6	15
15	Radiocarbon offsets and old world chronology as relevant to Mesopotamia, Egypt, Anatolia and Thera (Santorini). Scientific Reports, 2020, 10, 13785.	1.6	23
16	Tree rings reveal signs of Europe's sustainable forest management long before the first historical evidence. Scientific Reports, 2020, 10, 21832.	1.6	17
17	Predicted climate change will increase the truffle cultivation potential in central Europe. Scientific Reports, 2020, 10, 21281.	1.6	20
18	World's oldest dendrochronologically dated archaeological wood construction. Journal of Archaeological Science, 2020, 115, 105082.	1.2	11

#	Article	IF	CITATIONS
19	Illuminating Intcal During the Younger Dryas. Radiocarbon, 2020, 62, 883-889.	0.8	13
20	A multidisciplinary drought catalogue for southwestern Germany dating back toÂ1801. Natural Hazards and Earth System Sciences, 2020, 20, 2979-2995.	1.5	16
21	Missing link in Late Antiquity? A critical examination of Hollstein's Central European Oak Chronology. Dendrochronologia, 2019, 54, 20-28.	1.0	4
22	Dendrochronological evidence for long-distance timber trading in the Roman Empire. PLoS ONE, 2019, 14, e0224077.	1.1	19
23	Dendroarchaeological evidence of early medieval water mill technology. Journal of Archaeological Science, 2018, 93, 17-25.	1.2	14
24	Highâ€Throughput <scp>DNA</scp> sequencing of ancient wood. Molecular Ecology, 2018, 27, 1138-1154.	2.0	73
25	New tree-ring evidence for the Late Glacial period from the northern pre-Alps in eastern Switzerland. Quaternary Science Reviews, 2018, 186, 215-224.	1.4	27
26	Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. Nature Communications, 2018, 9, 3605.	5.8	98
27	New dendroarchaeological evidence of water well constructions reveals advanced Early Neolithic craftsman skills. Dendrochronologia, 2018, 50, 98-104.	1.0	15
28	Linking European building activity with plague history. Journal of Archaeological Science, 2018, 98, 81-92.	1.2	33
29	Dendro-provenancing of Arctic driftwood. Quaternary Science Reviews, 2017, 162, 1-11.	1.4	20
30	Speed Dating: A Rapid Way to Determine the Radiocarbon Age of Wood by EA-AMS. Radiocarbon, 2017, 59, 933-939.	0.8	12
31	Reply to 'Limited Late Antique cooling'. Nature Geoscience, 2017, 10, 243-243.	5.4	13
32	New Tree-Ring Evidence from the Pyrenees Reveals Western Mediterranean Climate Variability since Medieval Times. Journal of Climate, 2017, 30, 5295-5318.	1.2	62
33	Ecological indicators of Tuber aestivum habitats in temperate European beech forests. Fungal Ecology, 2017, 29, 59-66.	0.7	12
34	New Insights into the Complex Relationship between Weight and Maturity of Burgundy Truffles (Tuber) Tj ETQq	0 0 0 rgBT	Oyerlock 10
35	All-clear for gourmets: truffles not radioactive. Biogeosciences, 2016, 13, 1145-1147.	1.3	2
36	Wood anatomy and construction technique of Late Bronze Age rural cartwheels. Journal of Archaeological Science: Reports, 2016, 7, 123-128.	0.2	1

#	Article	IF	CITATIONS
37	Regional coherency of boreal forest growth defines Arctic driftwood provenancing. Dendrochronologia, 2016, 39, 3-9.	1.0	13
38	Fine-scale genetic structure of natural Tuber aestivum sites in southern Germany. Mycorrhiza, 2016, 26, 895-907.	1.3	27
39	Diverse growth trends and climate responses across Eurasia's boreal forest. Environmental Research Letters, 2016, 11, 074021.	2.2	75
40	The wood of Merovingian weaponry. Journal of Archaeological Science, 2016, 65, 148-153.	1.2	8
41	Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature Geoscience, 2016, 9, 231-236.	5.4	596
42	Timber Logging in Central Siberia is the Main Source for Recent Arctic Driftwood. Arctic, Antarctic, and Alpine Research, 2015, 47, 449-460.	0.4	24
43	Temperatureâ€induced recruitment pulses of Arctic dwarf shrub communities. Journal of Ecology, 2015, 103, 489-501.	1.9	90
44	Climate sensitivity of Mediterranean pine growth reveals distinct east-west dipole. International Journal of Climatology, 2015, 35, 2503-2513.	1.5	34
45	Long-term irrigation effects on Spanish holm oak growth and its black truffle symbiont. Agriculture, Ecosystems and Environment, 2015, 202, 148-159.	2.5	25
46	Commentary to Wetter et al. (2014): Limited tree-ring evidence for a 1540 European â€~Megadrought'. Climatic Change, 2015, 131, 183-190.	1.7	14
47	Tree-Ring Amplification of the Early Nineteenth-Century Summer Cooling in Central Europea. Journal of Climate, 2015, 28, 5272-5288.	1.2	33
48	Eneolithic pile dwellings south of the Alps precisely dated with tree-ring chronologies from the north. Dendrochronologia, 2015, 35, 91-98.	1.0	29
49	Old World megadroughts and pluvials during the Common Era. Science Advances, 2015, 1, e1500561.	4.7	403
50	Cruising an archive: On the palaeoclimatic value of the Lena Delta. Holocene, 2014, 24, 627-630.	0.9	10
51	A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. European Journal of Forest Research, 2014, 133, 61-71.	1.1	115
52	Extraterrestrial confirmation of tree-ring dating. Nature Climate Change, 2014, 4, 404-405.	8.1	24
53	Placing unprecedented recent fir growth in a Europeanâ€wide and Holoceneâ€long context. Frontiers in Ecology and the Environment, 2014, 12, 100-106.	1.9	90
54	Tracing the origin of Arctic driftwood. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 68-76.	1.3	37

#	Article	IF	Citations
55	Dendrochronological evidence of cockchafer (Melolontha sp.) outbreaks in subfossil tree-trunks from TovaÄov (CZ Moravia). Dendrochronologia, 2013, 31, 29-33.	1.0	16
56	Site- and species-specific responses of forest growth to climate across the European continent. Global Ecology and Biogeography, 2013, 22, 706-717.	2.7	297
57	New evidence for the symbiosis between Tuber aestivum and Picea abies. Mycorrhiza, 2013, 23, 669-673.	1.3	23
58	Potential and limitations of Burgundy truffle cultivation. Applied Microbiology and Biotechnology, 2013, 97, 5215-5224.	1.7	60
59	Filling the Eastern European gap in millennium-long temperature reconstructions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1773-1778.	3.3	131
60	Evaluating the wood anatomical and dendroecological potential of arctic dwarf shrub communities. IAWA Journal, 2013, 34, 485-497.	2.7	32
61	Reply to Holtzman and Gallagher. Clinical Infectious Diseases, 2012, 55, 1586-1586.	2.9	12
62	Climate sensitivity of a millennium-long pine chronology from Albania. Climate Research, 2012, 51, 217-228.	0.4	41
63	Digitizing Historical Plague. Clinical Infectious Diseases, 2012, 55, 1586-1588.	2.9	35
64	Drought-induced decline in Mediterranean truffle harvest. Nature Climate Change, 2012, 2, 827-829.	8.1	90
65	Climate Change during and after the Roman Empire: Reconstructing the Past from Scientific and Historical Evidence. Journal of Interdisciplinary History, 2012, 43, 169-220.	0.0	405
66	Spatial distribution and ecological variation of re-discovered German truffle habitats. Fungal Ecology, 2012, 5, 591-599.	0.7	54
67	Illuminating the mysterious world of truffles. Frontiers in Ecology and the Environment, 2012, 10, 462-463.	1.9	7
68	Early Neolithic Water Wells Reveal the World's Oldest Wood Architecture. PLoS ONE, 2012, 7, e51374.	1.1	86
69	Effects of sample size in dendroclimatology. Climate Research, 2012, 53, 263-269.	0.4	25
70	2500 Years of European Climate Variability and Human Susceptibility. Science, 2011, 331, 578-582.	6.0	1,154
71	Combined dendro-documentary evidence of Central European hydroclimatic springtime extremes over the last millennium. Quaternary Science Reviews, 2011, 30, 3947-3959.	1.4	46
72	Truffles and climate change. Frontiers in Ecology and the Environment, 2011, 9, 150-151.	1.9	35

WILLY TEGEL

#	Article	IF	CITATIONS
73	European tree-ring data and the Medieval Climate Anomaly. PAGES News, 2011, 19, 14-15.	0.1	19
74	Updating historical tree-ring records for climate reconstruction. Quaternary Science Reviews, 2010, 29, 1957-1959.	1.4	75