Ioannis A Stringlis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1018786/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5213-E5222.	3.3	608
2	Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. Frontiers in Plant Science, 2019, 10, 1741.	1.7	354
3	The Age of Coumarins in Plant–Microbe Interactions. Plant and Cell Physiology, 2019, 60, 1405-1419.	1.5	241
4	Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant Journal, 2018, 93, 166-180.	2.8	191
5	Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics, 2015, 16, 539.	1.2	184
6	Iron and Immunity. Annual Review of Phytopathology, 2017, 55, 355-375.	3.5	183
7	Rhizosphere-Associated Pseudomonas Suppress Local Root Immune Responses by Gluconic Acid-Mediated Lowering of Environmental pH. Current Biology, 2019, 29, 3913-3920.e4.	1.8	112
8	Coumarin Communication Along the Microbiome–Root–Shoot Axis. Trends in Plant Science, 2021, 26, 169-183.	4.3	107
9	Microbial small molecules – weapons of plant subversion. Natural Product Reports, 2018, 35, 410-433.	5.2	105
10	Rhizosphere Microbiome Recruited from a Suppressive Compost Improves Plant Fitness and Increases Protection against Vascular Wilt Pathogens of Tomato. Frontiers in Plant Science, 2017, 8, 2022.	1.7	82
11	The Soil-Borne Identity and Microbiome-Assisted Agriculture: Looking Back to the Future. Molecular Plant, 2020, 13, 1394-1401.	3.9	80
12	Mode of action of a non-pathogenic Fusarium oxysporum strain against Verticillium dahliae using Real Time QPCR analysis and biomarker transformation. Biological Control, 2009, 50, 30-36.	1.4	61
13	Pseudomonas simiae WCS417: star track of a model beneficial rhizobacterium. Plant and Soil, 2021, 461, 245-263.	1.8	53
14	Rhizosphere-enriched microbes as a pool to design synthetic communities for reproducible beneficial outputs. FEMS Microbiology Ecology, 2019, 95, .	1.3	50
15	Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant <i>Arabidopsis thaliana</i> switches from initial detection to antagonism. New Phytologist, 2019, 223, 867-881.	3.5	49
16	Type III Secretion System of Beneficial Rhizobacteria Pseudomonas simiae WCS417 and Pseudomonas defensor WCS374. Frontiers in Microbiology, 2019, 10, 1631.	1.5	36
17	Evaluation of application methods and biocontrol efficacy of Paenibacillus alvei strain K-165, against the cotton black root rot pathogen Thielaviopsis basicola. Biological Control, 2011, 58, 68-73.	1.4	33
18	Seedling vaccination by stem injecting a conidial suspension of F2, a non-pathogenic Fusarium oxysporum strain, suppresses Verticillium wilt of eggplant. Biological Control, 2011, 58, 387-392.	1.4	22

IOANNIS A STRINGLIS

#	Article	IF	CITATIONS
19	Transcriptome Signatures in Pseudomonas simiae WCS417 Shed Light on Role of Root-Secreted Coumarins in Arabidopsis-Mutualist Communication. Microorganisms, 2021, 9, 575.	1.6	12
20	Evolutionary "hide and seek―between bacterial flagellin and the plant immune system. Cell Host and Microbe, 2021, 29, 548-550.	5.1	10
21	Plant-Beneficial <i>Pseudomonas</i> Spp. Suppress Local Root Immune Responses by Gluconic Acid-Mediated Lowering of Environmental pH. SSRN Electronic Journal, 0, , .	0.4	5
22	Editorial: Beneficial Microbiota Interacting With the Plant Immune System. Frontiers in Plant Science, 2021, 12, 698902.	1.7	3