Michael J Clemente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10186942/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Somatic <i>STAT3</i> Mutations in Large Granular Lymphocytic Leukemia. New England Journal of Medicine, 2012, 366, 1905-1913.	27.0	681
2	Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia. New England Journal of Medicine, 2015, 373, 35-47.	27.0	508
3	STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood, 2012, 120, 3048-3057.	1.4	360
4	Inherited and Somatic Defects in DDX41 in Myeloid Neoplasms. Cancer Cell, 2015, 27, 658-670.	16.8	341
5	Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. Blood, 2013, 121, 4541-4550.	1.4	252
6	Pre-Transplant IFN-gamma ELISPOTs Are Associated with Post-Transplant Renal Function in African American Renal Transplant Recipients. American Journal of Transplantation, 2005, 5, 1971-1975.	4.7	148
7	STAT3 mutations indicate the presence of subclinical T-cell clones in a subset of aplastic anemia and myelodysplastic syndrome patients. Blood, 2013, 122, 2453-2459.	1.4	128
8	Deep sequencing reveals stepwise mutation acquisition in paroxysmal nocturnal hemoglobinuria. Journal of Clinical Investigation, 2014, 124, 4529-4538.	8.2	103
9	PRPF8 defects cause missplicing in myeloid malignancies. Leukemia, 2015, 29, 126-136.	7.2	102
10	Efficacy of rabbit anti-thymocyte globulin in severe aplastic anemia. Haematologica, 2011, 96, 1269-1275.	3.5	94
11	The analysis of clonal diversity and therapy responses using STAT3 mutations as a molecular marker in large granular lymphocytic leukemia. Haematologica, 2015, 100, 91-99.	3.5	88
12	Genomic determinants of chronic myelomonocytic leukemia. Leukemia, 2017, 31, 2815-2823.	7.2	85
13	Clinical and biological implications of ancestral and non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms. Leukemia, 2015, 29, 2134-2142.	7.2	77
14	Clinical features and treatment outcomes in large granular lymphocytic leukemia (LGLL). Leukemia and Lymphoma, 2018, 59, 416-422.	1.3	72
15	Clonal drift demonstrates unexpected dynamics of the T-cell repertoire in T-large granular lymphocyte leukemia. Blood, 2011, 118, 4384-4393.	1.4	63
16	Deep sequencing of the T-cell receptor repertoire in CD8+ T-large granular lymphocyte leukemia identifies signature landscapes. Blood, 2013, 122, 4077-4085.	1.4	62
17	Activating somatic mutations outside the SH2-domain of STAT3 in LGL leukemia. Leukemia, 2016, 30, 1204-1208.	7.2	62
18	Tofacitinib as a novel salvage therapy for refractory T-cell large granular lymphocytic leukemia. Leukemia, 2015, 29, 2427-2429.	7.2	57

MICHAEL J CLEMENTE

#	Article	IF	CITATIONS
19	Novel somatic mutations in large granular lymphocytic leukemia affecting the STAT-pathway and T-cell activation. Blood Cancer Journal, 2013, 3, e168-e168.	6.2	56
20	Novel recurrent mutations in the RAS-like GTP-binding gene RIT1 in myeloid malignancies. Leukemia, 2013, 27, 1943-1946.	7.2	53
21	Origins of myelodysplastic syndromes after aplastic anemia. Blood, 2017, 130, 1953-1957.	1.4	50
22	Somatic mutations in lymphocytes in patients with immune-mediated aplastic anemia. Leukemia, 2021, 35, 1365-1379.	7.2	41
23	Paroxysmal nocturnal hemoglobinuria and concurrent JAK2V617F mutation. Blood Cancer Journal, 2012, 2, e63-e63.	6.2	36
24	Therapeutic implications of variable expression of CD52 on clonal cytotoxic T cells in CD8+ large granular lymphocyte leukemia. Haematologica, 2009, 94, 1407-1414.	3.5	35
25	Recurrent genetic defects on chromosome 5q in myeloid neoplasms. Oncotarget, 2017, 8, 6483-6495.	1.8	34
26	Genomic landscape characterization of large granular lymphocyte leukemia with a systems genetics approach. Leukemia, 2017, 31, 1243-1246.	7.2	33
27	Molecular predictors of response in patients with myeloid neoplasms treated with lenalidomide. Leukemia, 2016, 30, 2405-2409.	7.2	31
28	Subclonal STAT3 mutations solidify clonal dominance. Blood Advances, 2019, 3, 917-921.	5.2	28
29	CBL mutation-related patterns of phosphorylation and sensitivity to tyrosine kinase inhibitors. Leukemia, 2012, 26, 1547-1554.	7.2	20
30	BRCC3 mutations in myeloid neoplasms. Haematologica, 2015, 100, 1051-7.	3.5	20
31	Molecular features of early onset adult myelodysplastic syndrome. Haematologica, 2017, 102, 1028-1034.	3.5	20
32	Deletions of Xp22.2 including PIG-A locus lead to paroxysmal nocturnal hemoglobinuria. Leukemia, 2011, 25, 379-382.	7.2	18
33	MICA polymorphism identified by whole genome array associated with NKC2D-mediated cytotoxicity in T-cell large granular lymphocyte leukemia. Haematologica, 2010, 95, 1713-1721.	3.5	17
34	Fanconi Anemia germline variants as susceptibility factors in aplastic anemia, MDS and AML. Oncotarget, 2018, 9, 2050-2057.	1.8	16
35	The complexity of interpreting genomic data in patients with acute myeloid leukemia. Blood Cancer Journal, 2016, 6, e510-e510.	6.2	14
36	Seroreactivity to LGL leukemia-specific epitopes in aplastic anemia, myelodysplastic syndrome and paroxysmal nocturnal hemoglobinuria: Results of a bone marrow failure consortium study. Leukemia Research, 2012, 36, 581-587.	0.8	13

MICHAEL J CLEMENTE

#	Article	IF	CITATIONS
37	Loss of expression of neutrophil proteinase-3: a factor contributing to thrombotic risk in paroxysmal nocturnal hemoglobinuria. Haematologica, 2011, 96, 954-962.	3.5	12
38	Discrimination of T-cell subsets and T-cell receptor repertoire distribution. Immunologic Research, 2014, 58, 20-27.	2.9	12
39	The evolution of paroxysmal nocturnal haemoglobinuria depends on intensity of immunosuppressive therapy. British Journal of Haematology, 2018, 182, 730-733.	2.5	11
40	Clonal PIGA mosaicism and dynamics in paroxysmal nocturnal hemoglobinuria. Leukemia, 2018, 32, 2507-2511.	7.2	11
41	TP53 Mutations and Outcome in Patients with Myelodysplastic Syndromes (MDS). Blood, 2016, 128, 4336-4336.	1.4	8
42	Sex Influences Age-Related Changes in Natural Antibodies and CD5+ B-1 Cells. Journal of Immunology, 2022, 208, 1755-1771.	0.8	6
43	Genetic and molecular characterization of myelodysplastic syndromes and related myeloid neoplasms. International Journal of Hematology, 2015, 101, 213-218.	1.6	5
44	The Mechanism By Which Mutant Nucleophosmin (NPM1) Creates Leukemic Self-Renewal Is Readily Reversed. Blood, 2016, 128, 444-444.	1.4	5
45	Discovery of STAT5b Mutations and Small Subclones of STAT3 Mutations in Large Granular Lymphocytic (LGL) Leukemia. Blood, 2012, 120, 871-871.	1.4	2
46	Outcome of Newly Diagnosed Acute Myeloid Leukemia (AML) Refractory to 1 or 2 Cycles of Induction Chemotherapy. Blood, 2015, 126, 1319-1319.	1.4	2
47	Serial Sequencing in Myelodysplastic Syndromes Reveals Dynamic Changes in Clonal Architecture and Allows for a New Prognostic Assessment of Mutations Detected in Cross-Sectional Testing. Blood, 2015, 126, 709-709.	1.4	2
48	Molecular and Immunophenotypic Characteristics of Adult Acute Leukemias of Ambiguous Lineage. Blood, 2016, 128, 1659-1659.	1.4	2
49	Subcutaneous Low Dose Alemtuzumab: Role As a Salvage Therapy in Immune -Mediated Marrow Failure Conditions. Blood, 2016, 128, 1505-1505.	1.4	1
50	Clonotype Switching Indicates Propensity for Clonal Outgrowth From Diverse Components of the T Cell Repertoire In T Cell Large Granular Lymphocyte Leukemia Blood, 2010, 116, 1171-1171.	1.4	0
51	Increased Group B Killer Cell Immunoglobulin-Like Receptor (KIR) Haplotypes with Mismatched MHC Class I and Altered NK Repertoire Distribution in Bone Marrow Failure Syndromes. Blood, 2011, 118, 2412-2412.	1.4	0
52	Determinants of Phenotypic Commitment and Clonal ProgressionConclusions from the Study of Clonal Architecture in CMML. Blood, 2015, 126, 2848-2848.	1.4	0
53	BCOR and BCORL1 mutations in Myelodysplastic Syndromes (MDS): Clonal Architecture and Impact on Outcomes. Blood, 2016, 128, 4293-4293.	1.4	0