Joan Rosello-Catafau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1018263/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nrf2 and oxidative stress in liver ischemia/reperfusion injury. FEBS Journal, 2022, 289, 5463-5479.	4.7	60
2	PEG35 as a Preconditioning Agent against Hypoxia/Reoxygenation Injury. International Journal of Molecular Sciences, 2022, 23, 1156.	4.1	7
3	PEG35 and Glutathione Improve Mitochondrial Function and Reduce Oxidative Stress in Cold Fatty Liver Graft Preservation. Antioxidants, 2022, 11, 158.	5.1	11
4	IGL-2 as a Unique Solution for Cold Static Preservation and Machine Perfusion in Liver and Mitochondrial Protection. Transplantation Proceedings, 2022, 54, 73-76.	0.6	5
5	Shaping of Hepatic Ischemia/Reperfusion Events: The Crucial Role of Mitochondria. Cells, 2022, 11, 688.	4.1	17
6	Development of Ex Situ Normothermic Reperfusion as an Innovative Method to Assess Pancreases After Preservation. Transplant International, 2022, 35, 10038.	1.6	0
7	The Use of a Single, Novel Preservation Solution in Split Liver Transplantation and Hypothermic Oxygenated Machine Perfusion. Transplantation, 2022, 106, e187-e188.	1.0	3
8	Liver Graft Hypothermic Static and Oxygenated Perfusion (HOPE) Strategies: A Mitochondrial Crossroads. International Journal of Molecular Sciences, 2022, 23, 5742.	4.1	5
9	Role of PEG35, Mitochondrial ALDH2, and Glutathione in Cold Fatty Liver Graft Preservation: An IGL-2 Approach. International Journal of Molecular Sciences, 2021, 22, 5332.	4.1	15
10	New Insights in Molecular Mechanisms and Pathophysiology of Ischemia-Reperfusion Injury 2.0: An Updated Overview. International Journal of Molecular Sciences, 2021, 22, 28.	4.1	7
11	New trends in transient hyperthermia and liver preservation. Transplant International, 2020, 33, 270-271.	1.6	1
12	Polyethylene Glycol 35 (PEG35) Modulates Exosomal Uptake and Function. Polymers, 2020, 12, 3044.	4.5	5
13	HOPE (hypothermic oxygenated perfusion) strategies in the era of dynamic liver graft preservation. EBioMedicine, 2020, 61, 103071.	6.1	6
14	Glycocalyx as a Useful Marker of Endothelial Injury in Liver Transplantation: The Role of Preservation Solution. Transplantation, 2020, 104, e356-e357.	1.0	5
15	Polyethylene Glycol 35 (PEG35) Protects against Inflammation in Experimental Acute Necrotizing Pancreatitis and Associated Lung Injury. International Journal of Molecular Sciences, 2020, 21, 917.	4.1	16
16	Polyethylene glycol 35 ameliorates pancreatic inflammatory response in cerulein-induced acute pancreatitis in rats. World Journal of Gastroenterology, 2020, 26, 5970-5982.	3.3	2
17	Original and generic preservation solutions in organ transplantation. A new paradigm?. Acta Cirurgica Brasileira, 2020, 35, e202000101.	0.7	2
18	Graft Protection Against Cold Ischemia Preservation: An Institute George Lopez 1 and Histidine-tryptophan-ketoglutarate Solution Appraisal. Transplantation Proceedings, 2018, 50, 714-718.	0.6	1

#	Article	IF	CITATIONS
19	Molecular Mechanisms and Pathophysiology of Ischemia-Reperfusion Injury. International Journal of Molecular Sciences, 2018, 19, 4093.	4.1	14
20	Cytoprotective Mechanisms in Fatty Liver Preservation against Cold Ischemia Injury: A Comparison between IGL-1 and HTK. International Journal of Molecular Sciences, 2018, 19, 348.	4.1	14
21	Aldehyde Dehydrogenase 2 (ALDH2) in Rat Fatty Liver Cold Ischemia Injury. International Journal of Molecular Sciences, 2018, 19, 2479.	4.1	21
22	Role of aldehyde dehydrogenase 2 in ischemia reperfusion injury: An update. World Journal of Gastroenterology, 2018, 24, 2984-2994.	3.3	40
23	Ubiquitin-proteasome system and oxidative stress in liver transplantation. World Journal of Gastroenterology, 2018, 24, 3521-3530.	3.3	13
24	PGC-1α Downregulation in Steatotic Liver Enhances Ischemia-Reperfusion Injury and Impairs Ischemic Preconditioning. Antioxidants and Redox Signaling, 2017, 27, 1332-1346.	5.4	22
25	Cross-Talk Between Sirtuin 1 and High-Mobility Box 1 in Steatotic Liver Graft Preservation. Transplantation Proceedings, 2017, 49, 765-769.	0.6	6
26	The Relevance of the UPS in Fatty Liver Graft Preservation: A New Approach for IGL-1 and HTK Solutions. International Journal of Molecular Sciences, 2017, 18, 2287.	4.1	15
27	GSK3Î ² and VDAC Involvement in ER Stress and Apoptosis Modulation during Orthotopic Liver Transplantation. International Journal of Molecular Sciences, 2017, 18, 591.	4.1	17
28	Relevance of proteolysis and proteasome activation in fatty liver graft preservation: An Institut Georges Lopez-1 <i>vs</i> University of Wisconsin appraisal. World Journal of Gastroenterology, 2017, 23, 4211.	3.3	9
29	Polyethylene Glycol Preconditioning: An Effective Strategy to Prevent Liver Ischemia Reperfusion Injury. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-10.	4.0	23
30	Polyethylene glycols: An effective strategy for limiting liver ischemia reperfusion injury. World Journal of Gastroenterology, 2016, 22, 6501.	3.3	44
31	Relevance of Endoplasmic Reticulum Stress Cell Signaling in Liver Cold Ischemia Reperfusion Injury. International Journal of Molecular Sciences, 2016, 17, 807.	4.1	31
32	Advances in treatment strategies for ischemia reperfusion injury. Expert Opinion on Pharmacotherapy, 2016, 17, 169-179.	1.8	45
33	Effects of Institut Georges Lopez-1 and Celsior preservation solutions on liver graft injury. World Journal of Gastroenterology, 2015, 21, 4159.	3.3	19
34	Carbonic Anhydrase Protects Fatty Liver Grafts against Ischemic Reperfusion Damage. PLoS ONE, 2015, 10, e0134499.	2.5	8
35	Protective Effect of Intravenous High Molecular Weight Polyethylene Glycol on Fatty Liver Preservation. BioMed Research International, 2015, 2015, 1-10.	1.9	17
36	PPAR <i>α</i> Agonist WY-14643 Induces SIRT1 Activity in Rat Fatty Liver Ischemia-Reperfusion Injury. BioMed Research International, 2015, 2015, 1-7.	1.9	15

#	Article	IF	CITATIONS
37	Emerging concepts in liver graft preservation. World Journal of Gastroenterology, 2015, 21, 396.	3.3	60
38	Losartan activates sirtuin 1 in rat reduced-size orthotopic liver transplantation. World Journal of Gastroenterology, 2015, 21, 8021.	3.3	11
39	Sirtuin 1 in rat orthotopic liver transplantation: An IGL-1 preservation solution approach. World Journal of Gastroenterology, 2015, 21, 1765.	3.3	22
40	Effects of trimetazidine on the Akt/eNOS signaling pathway and oxidative stress in an <i>in vivo</i> rat model of renal ischemia-reperfusion. Renal Failure, 2014, 36, 1436-1442.	2.1	32
41	Silent information regulator 1 protects the liver against ischemia-reperfusion injury: implications in steatotic liver ischemic preconditioning. Transplant International, 2014, 27, 493-503.	1.6	23
42	Polyphenol fraction of extra virgin olive oil protects against endothelial dysfunction induced by high glucose and free fatty acids through modulation of nitric oxide and endothelin-1. Redox Biology, 2014, 2, 971-977.	9.0	95
43	Evaluation of Institut Georges Lopez-1 Preservation Solution in Pig Pancreas Transplantation. Transplantation, 2014, 97, 901-907.	1.0	18
44	Polyethylene glycol rinse solution: An effective way to prevent ischemia-reperfusion injury. World Journal of Gastroenterology, 2014, 20, 16203.	3.3	31
45	Proteasome inhibitors protect the steatotic and non-steatotic liver graft against cold ischemia reperfusion injury. Experimental and Molecular Pathology, 2013, 94, 352-359.	2.1	29
46	<scp>AMPK</scp> involvement in endoplasmic reticulum stress and autophagy modulation after fatty liver graft preservation: a role for melatonin and trimetazidine cocktail. Journal of Pineal Research, 2013, 55, 65-78.	7.4	89
47	Bortezomib enhances fatty liver preservation in Institut George Lopez-1 solution through adenosine monophosphate activated protein kinase and Akt/mTOR pathways. Journal of Pharmacy and Pharmacology, 2013, 66, 62-72.	2.4	22
48	Reg3β Deficiency Impairs Pancreatic Tumor Growth by Skewing Macrophage Polarization. Cancer Research, 2013, 73, 5682-5694.	0.9	51
49	Role of sirtuins in ischemia-reperfusion injury. World Journal of Gastroenterology, 2013, 19, 7594.	3.3	56
50	Ubiquitin–proteasome system inhibitors and AMPK regulation in hepatic cold ischaemia and reperfusion injury: possible mechanisms. Clinical Science, 2012, 123, 93-98.	4.3	18
51	Attenuation of endoplasmic reticulum stress and mitochondrial injury in kidney with ischemic postconditioning application and trimetazidine treatment. Journal of Biomedical Science, 2012, 19, 71.	7.0	44
52	Ischemic preconditioning reduces endoplasmic reticulum stress and upregulates hypoxia inducible factor-11± in ischemic kidney: the role of nitric oxide. Journal of Biomedical Science, 2012, 19, 7.	7.0	66
53	The use of a reversible proteasome inhibitor in a model of Reduced-Size Orthotopic Liver transplantation in rats. Experimental and Molecular Pathology, 2012, 93, 99-110.	2.1	15
54	Melatonin protects steatotic and nonsteatotic liver grafts against cold ischemia and reperfusion injury. Journal of Pineal Research, 2011, 50, 213-221.	7.4	59

#	Article	IF	CITATIONS
55	How to protect liver graft with nitric oxide. World Journal of Gastroenterology, 2011, 17, 2879.	3.3	32
56	Melatonin prolongs graft survival of pancreas allotransplants in pigs. Journal of Pineal Research, 2011, 51, 445-453.	7.4	15
57	How Institut Georges Lopez Preservation Solution Protects Nonsteatotic and Steatotic Livers Against Ischemia-Reperfusion Injury. Transplantation Proceedings, 2011, 43, 77-79.	0.6	17
58	AMP-Activated Protein Kinase as a Target for Preconditioning in Transplantation Medicine. Transplantation, 2010, 90, 1241.	1.0	7
59	Hypoxia inducible factor-1α accumulation in steatotic liver preservation: Role of nitric oxide. World Journal of Gastroenterology, 2010, 16, 3499.	3.3	49
60	Addition of carvedilol to University Wisconsin solution improves rat steatotic and nonsteatotic liver preservation. Liver Transplantation, 2010, 16, 163-171.	2.4	37
61	Improved rat steatotic and nonsteatotic liver preservation by the addition of epidermal growth factor and insulin-like growth factor-I to University of Wisconsin solution. Liver Transplantation, 2010, 16, 1098-1111.	2.4	24
62	Relevance of Epidermal Growth Factor to Improve Steatotic Liver Preservation in IGL-1 Solution. Transplantation Proceedings, 2010, 42, 3070-3075.	0.6	14
63	Pharmacological strategies against cold ischemia reperfusion injury. Expert Opinion on Pharmacotherapy, 2010, 11, 537-555.	1.8	55
64	Insulin like growth factor-1 increases fatty liver preservation in IGL-1 solution. World Journal of Gastroenterology, 2010, 16, 5693.	3.3	24
65	Are Angiotensin II Receptor Antagonists Useful Strategies in Steatotic and Nonsteatotic Livers in Conditions of Partial Hepatectomy under Ischemia-Reperfusion?. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 130-140.	2.5	39
66	Insulin-Like Growth Factor and Epidermal Growth Factor Treatment: New Approaches to Protecting Steatotic Livers against Ischemia-Reperfusion Injury. Endocrinology, 2009, 150, 3153-3161.	2.8	28
67	Therapeutic Targets in Liver Transplantation: Angiotensin II in Nonsteatotic Grafts and Angiotensin-(1—7) in Steatotic Grafts. American Journal of Transplantation, 2009, 9, 439-451.	4.7	31
68	Effect of angiotensin II and bradykinin inhibition in rat reduced-size liver transplantation. Liver Transplantation, 2009, 15, 313-320.	2.4	15
69	Prevention of I/R injury in fatty livers by ischemic preconditioning is associated with increased mitochondrial tolerance: the key role of ATPsynthase and mitochondrial permeability transition. Transplant International, 2009, 22, 1081-1090.	1.6	36
70	Activation of peroxisome proliferator-activated receptor-α inhibits the injurious effects of adiponectin in rat steatotic liver undergoing ischemia-reperfusion. Hepatology, 2008, 47, 461-472.	7.3	64
71	Inhibition of angiotensin II action protects rat steatotic livers against ischemia-reperfusion injury. Critical Care Medicine, 2008, 36, 1256-1266.	0.9	45
72	Addition of adenosine monophosphate-activated protein kinase activators to University of Wisconsin solution: A way of protecting rat steatotic livers. Liver Transplantation, 2007, 13, 410-425.	2.4	55

#	Article	IF	CITATIONS
73	New preservation strategies for preventing liver grafts against cold ischemia reperfusion injury. Journal of Gastroenterology and Hepatology (Australia), 2007, 22, 1120-1126.	2.8	33
74	Heat Shock Proteins and Mitogen-activated Protein Kinases in Steatotic Livers Undergoing Ischemia-Reperfusion: Some Answers. American Journal of Pathology, 2006, 168, 1474-1485.	3.8	55
75	Past and future approaches to ischemia-reperfusion lesion associated with liver transplantation. Life Sciences, 2006, 79, 1881-1894.	4.3	178
76	Hepatic microcirculatory failure. Acta Cirurgica Brasileira, 2006, 21, 48-53.	0.7	50
77	Trimetazidine: Is it a promising drug for use in steatotic grafts. World Journal of Gastroenterology, 2006, 12, 908.	3.3	32
78	Protection against lung damage in reduced-size liver transplantation*. Critical Care Medicine, 2006, 34, 1506-1513.	0.9	38
79	How ischaemic preconditioning protects small liver grafts. Journal of Pathology, 2006, 208, 62-73.	4.5	52
80	Preservation of steatotic livers in IGL-1 solution. Liver Transplantation, 2006, 12, 1215-1223.	2.4	84
81	Mediators of rat ischemic hepatic preconditioning after cold preservation identified by microarray analysis. Liver Transplantation, 2006, 12, 1615-1625.	2.4	14
82	Adenosine monophosphate-activated protein kinase and nitric oxide in rat steatotic liver transplantation. Journal of Hepatology, 2005, 43, 997-1006.	3.7	70
83	Is Ischemic Preconditioning a Useful Strategy in Steatotic Liver Transplantation?. American Journal of Transplantation, 2004, 4, 888-899.	4.7	78
84	Protection of Reduced-Size Liver for Transplantation. American Journal of Transplantation, 2004, 4, 1408-1420.	4.7	41
85	Ischemic preconditioning affects interleukin release in fatty livers of rats undergoing ischemia/reperfusion. Hepatology, 2004, 39, 688-698.	7.3	98
86	The future of fatty livers. Journal of Hepatology, 2004, 41, 149-151.	3.7	26
87	Liver ischemic preconditioning: a new strategy for the prevention of ischemia-reperfusion injury. Transplantation Proceedings, 2003, 35, 1800-1802.	0.6	38
88	P-selectin upregulation in bleomycin induced lung injury in rats: effect of N-acetyl-L-cysteine. Thorax, 2002, 57, 629-634.	5.6	40
89	Ischemic Preconditioning Increases the Tolerance of Fatty Liver to Hepatic Ischemia-Reperfusion Injury in the Rat. American Journal of Pathology, 2002, 161, 587-601.	3.8	192
90	Streptozotocin-Pancreatic Damage in the Rat: Modulatory Effect of 15-Deoxy Delta12,14-Prostaglandin J2 on Nitridergic and Prostanoid Pathway. Nitric Oxide - Biology and Chemistry, 2002, 6, 214-220.	2.7	18

#	Article	IF	CITATIONS
91	Preconditioning protects liver and lung damage in rat liver transplantation: Role of xanthine/xanthine oxidase. Hepatology, 2002, 36, 562-572.	7.3	92
92	Soluble receptors released during acute pancreatitis interfere with the detection of tumor necrosis factor-α. Critical Care Medicine, 2001, 29, 1023-1026.	0.9	15
93	Protective Effect of Ischemic Preconditioning on Cold Preservation and Reperfusion Injury Associated With Rat Intestinal Transplantation. Annals of Surgery, 2001, 234, 98-106.	4.2	70
94	CO2 IN STATIC MESENTERIC VENOUS BLOOD DURING INTESTINAL ISCHEMIA AND ISCHEMIC PRECONDITIONING IN RATS. Shock, 2001, 16, 403-408.	2.1	7
95	Absorption and effects of 3-(N-phenylamino)-1,2-propanediol esters in relation to toxic oil syndrome. Lipids, 2001, 36, 1125-1133.	1.7	9
96	Preconditioning protects against systemic disorders associated with hepatic ischemia-reperfusion through blockade of tumor necrosis factor–induced P-selectin up-regulation in the rat. Hepatology, 2001, 33, 100-113.	7.3	168
97	Adenosine monophosphate[ndash]activated protein kinase mediates the protective effects of ischemic preconditioning on hepatic ischemia-reperfusion injury in the rat. Hepatology, 2001, 34, 1164-1173.	7.3	158
98	H2O2 and PARS mediate lung P-selectin upregulation in acute pancreatitis. Free Radical Biology and Medicine, 2000, 28, 1286-1294.	2.9	29
99	P-selectin expression and Kupffer cell activation in rat acute pancreatitis. Digestive Diseases and Sciences, 2000, 45, 1535-1544.	2.3	28
100	Effect of peritoneal lavage and lymph ligature on systemic complications of experimental acute pancreatitis. Digestive Diseases and Sciences, 2000, 45, 909-914.	2.3	4
101	Pancreatitis Induces HSP72 in the Lung: Role of Neutrophils and Xanthine Oxidase. Biochemical and Biophysical Research Communications, 2000, 273, 1078-1083.	2.1	10
102	The protective role of adenosine in inducing nitric oxide synthesis in rat liver ischemia preconditioning is mediated by activation of adenosine A ₂ receptors. Hepatology, 1999, 29, 126-132.	7.3	190
103	Protective effect of liver ischemic preconditioning on liver and lung injury induced by hepatic ischemia-reperfusion in the rat. Hepatology, 1999, 30, 1481-1489.	7.3	138
104	Evolution of Streptozotocin–Pancreatic Damage in the Rat: Modulatory Effect of Endothelins on the Nitridergic and Prostanoid Pathway. Nitric Oxide - Biology and Chemistry, 1999, 3, 459-466.	2.7	13
105	Activation of Alveolar Macrophages in Lung Injury Associated With Experimental Acute Pancreatitis Is Mediated by the Liver. Annals of Surgery, 1999, 229, 230-236.	4.2	97
106	Role of P-Selectin and ICAM-1 in Pancreatitis-Induced Lung Inflammation in Rats. Annals of Surgery, 1999, 230, 792.	4.2	79
107	Leukotriene generation and neutrophil infiltration after experimental acute pancreatitis. Inflammation, 1998, 22, 83-93.	3.8	47
108	Free radicals generated by xanthine oxidase mediate pancreatitis-associated organ failure. Digestive Diseases and Sciences, 1998, 43, 2405-2410.	2.3	55

#	Article	IF	CITATIONS
109	Endothelin mediated nitric oxide effects in ischemiareperfusion associated with pancreas transplantation. Digestive Diseases and Sciences, 1998, 43, 2627-2633.	2.3	7
110	Hepatic preconditioning in rats is defined by a balance of adenosine and xanthine. Hepatology, 1998, 28, 768-773.	7.3	101
111	Nitric Oxide Enhances Endothelin Production in Pancreas Transplantation. Pancreas, 1997, 14, 369-372.	1.1	9
112	Free Radical Enhancement Promotes Leucocyte Recruitment Through a PAF and LTB4 Dependent Mechanism. Free Radical Biology and Medicine, 1997, 22, 947-954.	2.9	56
113	Differential effect of nitric oxide inhibition as a function of preservation period in pancreas transplantation. Digestive Diseases and Sciences, 1997, 42, 962-971.	2.3	11
114	Protective effect of preconditioning on the injury associated to hepatic ischemia-reperfusion in the rat: Role of nitric oxide and adenosine. Hepatology, 1997, 25, 934-937.	7.3	306
115	Intestinal Preconditioning Is Mediated by a Transient Increase in Nitric Oxide. Biochemical and Biophysical Research Communications, 1996, 222, 27-32.	2.1	167
116	Liver Ischemic Preconditioning Is Mediated by the Inhibitory Action of Nitric Oxide on Endothelin. Biochemical and Biophysical Research Communications, 1996, 229, 264-270.	2.1	163
117	Calcium Channel Blockers in Experimental Acute Pancreatitis. Pancreas, 1996, 12, 178-182.	1.1	4
118	Nitric oxide enhances 12-HETE versus LTB4 generation in pancreatic transplantation. Inflammation, 1996, 20, 23-31.	3.8	7
119	Role of xanthine oxidase and eicosanoids in development of pancreatic ischemia-reperfusion injury. Inflammation, 1995, 19, 469-478.	3.8	12
120	A bradykinin antagonist inhibited nitric oxide generation and thromboxane biosynthesis in acute pancreatitis. Prostaglandins, 1995, 49, 285-294.	1.2	11
121	NITRIC OXIDE AND ARACHIDONATE METABOLISM IN ISCHEMIA-REPERFUSION ASSOCIATED WITH PANCREAS TRANSPLANTATION. Transplantation, 1995, 59, 417-421.	1.0	30
122	Prostanoid generation in early stages of acute pancreatitis: A role for nitric oxide. Inflammation, 1994, 18, 469-480.	3.8	23
123	Prostanoids and oxygen free radicals in early stages of experimental acute pancreatitis. Digestive Diseases and Sciences, 1994, 39, 1537-1543.	2.3	11
124	Prostaglandin D2, F2α, E20, and E1 in Early Phase of Experimental Acute Necrohemorrhagic Pancreatitis in Rats. Pancreas, 1994, 9, 73-77.	1.1	12
125	Effect of prostaglandins and superoxide dismutase administration on oxygen free radical production in experimental acute pancreatitis. Inflammation, 1993, 17, 563-571.	3.8	29
126	Changes of systemic prostacyclin and thromboxane A2 in sodium taurocholate-and cerulein-induced acute pancreatitis in rats. Digestive Diseases and Sciences, 1993, 38, 33-38.	2.3	15

#	ARTICLE	IF	CITATIONS
127	Altered leukotriene B4 levels by HL-60 cells after monocytic/macrophage differentiation. Agents and Actions, 1993, 40, 72-77.	0.7	3
128	Liquid chromatography and radioimmunoassay method for the determination of prostaglandins E1 and E2 in rat embryo incubates. Journal of Chromatography A, 1993, 655, 85-88.	3.7	10
129	Cyclooxygenase and lipoxygenase metabolism in sodium taurocholate induced acute hemorrhagic pancreatitis in rats. Prostaglandins, 1993, 45, 315-322.	1.2	16
130	Pancreas prostanoid production in ischemia and reperfusion. Prostaglandins, 1992, 43, 497-501.	1.2	3
131	Solid-phase extraction of prostanoids using an automatic sample preparation system. Journal of Chromatography A, 1992, 607, 239-243.	3.7	5
132	In vivo transformation of arachidonic acid into 12-hydroxy-5,8,10,14-eicosatetraenoic acid by human nasal mucosa. Biomedical Applications, 1992, 575, 143-146.	1.7	5
133	TISSULAR PROSTANOID RELEASE, PHOSPHOLIPASE A2 ACTIVITY, AND LIPID PEROXIDATION IN PANCREAS TRANSPLANTATION. Transplantation, 1991, 51, 987-989.	1.0	34
134	Cyclooxygenase and lipoxygenase arachidonic acid metabolism by monocytes from human immune deficiency virus-infected drug users. Journal of Chromatography A, 1991, 557, 507-513.	3.7	25
135	Simultaneous reversed-phase extraction of lipoxygenase and cyclooxygenase metabolites of arachidonic acid in nasal secretions: Methodological aspects. Biomedical Applications, 1990, 532, 217-225.	1.7	24