Karren M Plain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1018019/publications.pdf

Version: 2024-02-01

257357 223716 2,297 69 24 46 h-index citations g-index papers 71 71 71 2090 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Global Phylogeny of Mycobacterium avium and Identification of Mutation Hotspots During Niche Adaptation. Frontiers in Microbiology, 2022, 13, .	1.5	8
2	Mycobacterium avium subsp. paratuberculosis exploits miRNA expression to modulate lipid metabolism and macrophage polarisation pathways during infection. Scientific Reports, 2022, 12, .	1.6	2
3	Comparative Genomics of Mycobacterium avium Subspecies Paratuberculosis Sheep Strains. Frontiers in Veterinary Science, 2021, 8, 637637.	0.9	7
4	Simulation modelling to estimate the herd-sensitivity of various pool sizes to test beef herds for Johne's disease in Australia. Preventive Veterinary Medicine, 2021, 189, 105294.	0.7	3
5	Mycobacterial infection-induced miR-206 inhibits protective neutrophil recruitment via the CXCL12/CXCR4 signalling axis. PLoS Pathogens, 2021, 17, e1009186.	2.1	18
6	Continuity in ovine Johne's disease vaccination practices despite a decline in clinical disease. Australian Veterinary Journal, 2021, 99, 392-394.	0.5	0
7	Factors influencing the effectiveness of the Gudair vaccine for controlling Johne's disease in sheep flocks in Australia. Preventive Veterinary Medicine, 2021, 193, 105394.	0.7	3
8	Comparison of the current abattoir surveillance system for detection of paratuberculosis in Australian sheep with quantitative PCR tissue strategies using simulation modelling. Preventive Veterinary Medicine, 2021, 196, 105495.	0.7	1
9	Australian Veterinarians' Perceptions Regarding the Zoonotic Potential of Mycobacterium avium Subspecies Paratuberculosis. Veterinary Sciences, 2020, 7, 33.	0.6	4
10	Autoantigen specific IL-2 activated CD4+CD25+T regulatory cells inhibit induction of experimental autoimmune neuritis. Journal of Neuroimmunology, 2020, 341, 577186.	1.1	11
11	Comparison of methods for miRNA isolation and quantification from ovine plasma. Scientific Reports, 2020, 10, 825.	1.6	52
12	The immunogenicity and tissue reactivity of Mycobacterium avium subsp paratuberculosis inactivated whole cell vaccine is dependent on the adjuvant used. Heliyon, 2019, 5, e01911.	1.4	11
13	The humoral immune response is essential for successful vaccine protection against paratuberculosis in sheep. BMC Veterinary Research, 2019, 15, 223.	0.7	18
14	Biomarkers for Detecting Resilience against Mycobacterial Disease in Animals. Infection and Immunity, 2019, 88, .	1.0	20
15	Alloactivation of NaÃ-ve CD4+CD8â-'CD25+T Regulatory Cells: Expression of CD8α Identifies Potent Suppressor Cells That Can Promote Transplant Tolerance Induction. Frontiers in Immunology, 2019, 10, 2397.	2.2	10
16	Gene expression profiles during subclinical Mycobacterium avium subspecies paratuberculosis infection in sheep can predict disease outcome. Scientific Reports, 2019, 9, 8245.	1.6	21
17	Complete Genome Sequence of the Telford Type S Strain of Mycobacterium avium subsp. paratuberculosis. Microbiology Resource Announcements, 2019, 8, .	0.3	22
18	Mycobacterium avium subspecies paratuberculosis is able to manipulate host lipid metabolism and accumulate cholesterol within macrophages. Microbial Pathogenesis, 2019, 130, 44-53.	1.3	39

#	Article	IF	Citations
19	Determining an optimal pool size for testing beef herds for Johne's disease in Australia. PLoS ONE, 2019, 14, e0225524.	1.1	10
20	Immunopathological changes and apparent recovery from infection revealed in cattle in an experimental model of Johne's disease using a lyophilised culture of Mycobacterium avium subspecies paratuberculosis. Veterinary Microbiology, 2018, 219, 53-62.	0.8	22
21	Defining resilience to mycobacterial disease: Characteristics of survivors of ovine paratuberculosis. Veterinary Immunology and Immunopathology, 2018, 195, 56-64.	0.5	19
22	Integrated vaccine screening system: using cellular functional capacity in vitro to assess genuine vaccine protectiveness in ruminants. Pathogens and Disease, 2018, 76, .	0.8	5
23	Sheep and cattle exposed to Mycobacterium avium subspecies paratuberculosis exhibit altered total serum cholesterol profiles during the early stages of infection. Veterinary Immunology and Immunopathology, 2018, 202, 164-171.	0.5	4
24	Cytokines affecting CD4 + T regulatory cells in transplant tolerance. II. Interferon gamma (IFN- \hat{I}^3) promotes survival of alloantigen-specific CD4 + T regulatory cells. Transplant Immunology, 2017, 42, 24-33.	0.6	16
25	Detection of Mycobacterium avium subspecies paratuberculosis in powdered infant formula using IS 900 quantitative PCR and liquid culture media. International Journal of Food Microbiology, 2017, 257, 1-9.	2.1	13
26	Cytokines affecting CD4 + T regulatory cells in transplant tolerance. III. Interleukin-5 (IL-5) promotes survival of alloantigen-specific CD4 + T regulatory cells. Transplant Immunology, 2017, 43-44, 33-41.	0.6	11
27	Culture-Independent Identification of Mycobacterium avium Subspecies paratuberculosis in Ovine Tissues: Comparison with Bacterial Culture and Histopathological Lesions. Frontiers in Veterinary Science, 2017, 4, 232.	0.9	7
28	Changes in Reactivity In Vitro of CD4+CD25+ and CD4+CD25â^' T Cell Subsets in Transplant Tolerance. Frontiers in Immunology, 2017, 8, 994.	2.2	8
29	PCR Inhibition of a Quantitative PCR for Detection of Mycobacterium avium Subspecies Paratuberculosis DNA in Feces: Diagnostic Implications and Potential Solutions. Frontiers in Microbiology, 2017, 08, 115.	1.5	44
30	IFN- \hat{I}^3 fails to overcome inhibition of selected macrophage activation events in response to pathogenic mycobacteria. PLoS ONE, 2017, 12, e0176400.	1.1	9
31	Evaluation of the limitations and methods to improve rapid phage-based detection of viable Mycobacterium avium subsp. paratuberculosis in the blood of experimentally infected cattle. BMC Veterinary Research, 2016 , 12 , 115 .	0.7	14
32	A Rapid Method for Quantifying Viable Mycobacterium avium subsp. paratuberculosis in Cellular Infection Assays. Applied and Environmental Microbiology, 2016, 82, 5553-5562.	1.4	20
33	Efficient, Validated Method for Detection of Mycobacterial Growth in Liquid Culture Media by Use of Bead Beating, Magnetic-Particle-Based Nucleic Acid Isolation, and Quantitative PCR. Journal of Clinical Microbiology, 2015, 53, 1121-1128.	1.8	22
34	Specific faecal antibody responses in sheep infected with Mycobacterium avium subspecies paratuberculosis. Veterinary Immunology and Immunopathology, 2015, 166, 125-131.	0.5	14
35	Histopathological Characterization of Cutaneous Delayed-type Hypersensitivity and Correlations with Intestinal Pathology and Systemic Immune Responses in Sheep with Paratuberculosis. Journal of Comparative Pathology, 2015, 153, 67-80.	0.1	6
36	Macrophage polarization in cattle experimentally exposed to <i>Mycobacterium avium</i> subsp. <i>paratuberculosis</i> . Pathogens and Disease, 2015, 73, ftv085.	0.8	41

#	Article	IF	CITATIONS
37	CD4+ T-cells, $\hat{l}^3\hat{l}^*$ T-cells and B-cells are associated with lack of vaccine protection in Mycobacterium avium subspecies paratuberculosis infection. Vaccine, 2015, 33, 149-155.	1.7	19
38	Interleukin-12 (IL-12p70) Promotes Induction of Highly Potent Th1-Like CD4+CD25+ T Regulatory Cells That Inhibit Allograft Rejection in Unmodified Recipients. Frontiers in Immunology, 2014, 5, 190.	2.2	45
39	Role of host- and pathogen-associated lipids in directing the immune response in mycobacterial infections, with emphasis onMycobacterium aviumsubsp.paratuberculosis. Critical Reviews in Microbiology, 2014, 42, 1-13.	2.7	30
40	High-Throughput Direct Fecal PCR Assay for Detection of Mycobacterium avium subsp. paratuberculosis in Sheep and Cattle. Journal of Clinical Microbiology, 2014, 52, 745-757.	1.8	76
41	Expression of genes associated with cholesterol and lipid metabolism identified as a novel pathway in the early pathogenesis of Mycobacterium avium subspecies paratuberculosis-infection in cattle. Veterinary Immunology and Immunopathology, 2014, 160, 147-157.	0.5	24
42	Cytokines affecting CD4+ T regulatory cells in transplant tolerance. Interleukin-4 does not maintain alloantigen specific CD4+CD25+ Treg. Transplant Immunology, 2013, 29, 51-59.	0.6	16
43	Can early host responses to mycobacterial infection predict eventual disease outcomes?. Preventive Veterinary Medicine, 2013, 112, 203-212.	0.7	37
44	Cellular and humoral immunogenicity of Mycobacterium avium subsp. paratuberculosis specific lipopentapeptide antigens. Research in Veterinary Science, 2013, 95, 123-129.	0.9	10
45	In vivo and in vitro expression pattern of Toll-like receptors in Mycobacterium avium subspecies paratuberculosis infection. Veterinary Immunology and Immunopathology, 2013, 156, 20-31.	0.5	17
46	Development and Validation of a Liquid Medium (M7H9C) for Routine Culture of Mycobacterium avium subsp. paratuberculosis To Replace Modified Bactec 12B Medium. Journal of Clinical Microbiology, 2013, 51, 3993-4000.	1.8	52
47	Do Natural T Regulatory Cells become Activated to Antigen Specific T Regulatory Cells in Transplantation and in Autoimmunity?. Frontiers in Immunology, 2013, 4, 208.	2.2	28
48	IL-5 promotes induction of antigen-specific CD4+CD25+ T regulatory cells that suppress autoimmunity. Blood, 2012, 119, 4441-4450.	0.6	81
49	Comparative immunological and microbiological aspects of paratuberculosis as a model mycobacterial infection. Veterinary Immunology and Immunopathology, 2012, 148, 29-47.	0.5	310
50	Enhancement of the interferon gamma assay to detect paratuberculosis using interleukin-7 and interleukin-12 potentiation. Veterinary Immunology and Immunopathology, 2012, 149, 28-37.	0.5	11
51	Expression of genes associated with the antigen presentation and processing pathway are consistently regulated in early Mycobacterium avium subsp. paratuberculosis infection. Comparative Immunology, Microbiology and Infectious Diseases, 2012, 35, 151-162.	0.7	40
52	Does a Th1 over Th2 dominancy really exist in the early stages of Mycobacterium avium subspecies paratuberculosis infections?. Immunobiology, 2011, 216, 840-846.	0.8	376
53	Indoleamine 2,3-Dioxygenase, Tryptophan Catabolism, and Mycobacterium avium subsp. paratuberculosis: a Model for Chronic Mycobacterial Infections. Infection and Immunity, 2011, 79, 3821-3832.	1.0	32
54	A longitudinal study to evaluate the diagnostic potential of a direct faecal quantitative PCR test for Johne's disease in sheep. Veterinary Microbiology, 2011, 148, 35-44.	0.8	19

#	Article	IF	Citations
55	Candidate gene and genome-wide association studies of Mycobacterium avium subsp. paratuberculosis infection in cattle and sheep: A review. Comparative Immunology, Microbiology and Infectious Diseases, 2011, 34, 197-208.	0.7	45
56	Membrane attack complex of complement is not essential for immune mediated demyelination in experimental autoimmune neuritis. Journal of Neuroimmunology, 2010, 229, 98-106.	1.1	16
57	Toll-like receptor (TLR)6 and TLR1 differentiation in gene expression studies of Johne's disease. Veterinary Immunology and Immunopathology, 2010, 137, 142-148.	0.5	23
58	Role of IL-4 and Th2 responses in allograft rejection and tolerance. Current Opinion in Organ Transplantation, 2009, 14, 16-22.	0.8	57
59	CD4+CD25+ T cells alloactivated ex vivo by IL-2 or IL-4 become potent alloantigen-specific inhibitors of rejection with different phenotypes, suggesting separate pathways of activation by Th1 and Th2 responses. Blood, 2009, 113, 479-487.	0.6	48
60	Studies on na \tilde{A} -ve CD4+CD25+T cells inhibition of na \tilde{A} -ve CD4+CD25 \hat{a} - \hat{A} -T cells in mixed lymphocyte cultures. Transplant Immunology, 2008, 18, 291-301.	0.6	26
61	Transfer of Allograft Specific Tolerance Requires CD4+CD25+T Cells but Not Interleukin-4 or Transforming Growth Factor–β and Cannot Induce Tolerance to Linked Antigens. Transplantation, 2007, 83, 1075-1084.	0.5	20
62	Transplant Tolerance Associated With a Th1 Response and Not Broken by IL-4, IL-5, and TGF- \hat{l}^2 Blockade or Th1 Cytokine Administration. Transplantation, 2007, 83, 764-773.	0.5	16
63	IL-13 prolongs allograft survival: Association with inhibition of macrophage cytokine activation. Transplant Immunology, 2007, 17, 178-186.	0.6	34
64	The cellular basis of cardiac allograft rejection. IX. Ratio of $na\tilde{A}$ ve CD4+CD25+ T cells/CD4+CD25 \hat{a} T cells determines rejection or tolerance. Transplant Immunology, 2006, 15, 311-318.	0.6	31
65	Interleukin-12p70 Prolongs Allograft Survival by Induction of Interferon Gamma and Nitric Oxide Production. Transplantation, 2006, 82, 1324-1333.	0.5	24
66	INDUCTION OF SPECIFIC TOLERANCE TO ALLOGRAFTS IN RATS BY THERAPY WITH NON-MITOGENIC, NON-DEPLETING ANTI-CD3 MONOCLONAL ANTIBODY. Transplantation, 1999, 67, 605-613.	0.5	68
67	TREATMENT WITH INTERLEUKIN-4 PROLONGS ALLOGENEIC NEONATAL HEART GRAFT SURVIVAL BY INDUCING T HELPER 2 RESPONSES. Transplantation, 1998, 65, 1145-1152.	0.5	60
68	THE CELLULAR BASIS OF CARDIAC ALLOGRAFT REJECTION. Transplantation, 1998, 65, 1152-1158.	0.5	16
69	INDUCTION OF TOLERANCE WITH NONDEPLETING ANTI-CD4 MONOCLONAL ANTIBODIES IS ASSOCIATED WITH DOWN-REGULATION OF TH2 CYTOKINES1. Transplantation, 1997, 64, 1559-1567.	0.5	50