Chuan-Jiang Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1017747/publications.pdf

Version: 2024-02-01

57 papers	741 citations	623188 14 h-index	25 g-index
57 all docs	57 docs citations	57 times ranked	634 citing authors

#	Article	IF	CITATIONS
1	Syntheses of two copper metal-organic frameworks with tri(1,2,4-triazole) and biscarboxylate and graphene oxide composites for decomposition of dye by visible-light driven and ultrasonic assisted. Journal of Solid State Chemistry, 2022, 307, 122864.	1.4	9
2	Porphyrinâ€based NiFe Porous Organic Polymer Catalysts for the Oxygen Evolution Reaction. ChemCatChem, 2021, 13, 1396-1402.	1.8	11
3	Crystallographic and computational studies of a tartaric acid amide linked zinc bisporphyrinate. Inorganic Chemistry Communication, 2021, 126, 108492.	1.8	1
4	Chirality-driven molecular packing structure difference and potential application for 3D printing of a series of bola-type Ala–Phe dipeptides. New Journal of Chemistry, 2020, 44, 20726-20733.	1.4	5
5	Enantioselectivity of a tartaric acid amide linked zinc bisporphyrinate towards amino acid esters. Dyes and Pigments, 2020, 176, 108223.	2.0	6
6	Crystallographic and DFT studies on host-guest complexes consisting of zinc bisporphyrinates and 1-phenylethylamine. Journal of Coordination Chemistry, 2019, 72, 1156-1170.	0.8	2
7	Dimeric structures of zinc and copper complexes of malonamide-linked bisporphyrin. Inorganic Chemistry Communication, 2019, 102, 158-161.	1.8	3
8	Precise control of chirality transfer by adjusting the alkyl substituents of guests. Dyes and Pigments, 2019, 160, 692-699.	2.0	7
9	Stoichiometrically controlled chirality inversion in zinc bisporphyrinate–monoamine complexes. Dalton Transactions, 2018, 47, 5503-5512.	1.6	11
10	Hydrogen-Bonding Effects in Five-Coordinate High-Spin Imidazole-Ligated Iron(II) Porphyrinates. Inorganic Chemistry, 2018, 57, 793-803.	1.9	1
11	Synthesis and crystallographic characterization of a brominated porphyrin with a nitrophenyl substituent and its iron derivative. Journal of Porphyrins and Phthalocyanines, 2018, 22, 751-757.	0.4	O
12	A study of the effect of axial ligand steric hindrance. Journal of Porphyrins and Phthalocyanines, 2018, 22, 588-595.	0.4	2
13	Evolution of Nanoflowers and Nanospheres of Zinc Bisporphyrinate Tweezers at the Air/Water Interface. Langmuir, 2017, 33, 3694-3701.	1.6	8
14	Chirality Transfer from Chiral Monoamines to an m-Phthalic Diamide-Linked Zinc Bisporphyrinate with a Benzylamide Substituent. Inorganic Chemistry, 2017, 56, 10204-10214.	1.9	11
15	Host-guest assembly for highly sensitive probing of a chiral mono-alcohol with a zinc trisporphyrinate. Scientific Reports, 2017, 7, 3829.	1.6	10
16	Synthesis and characterization of 4-chlorobutyl ester of 5-(8-carboxyl-1-naphthyl)-10,15,20-triphenyl-porphyrin and its zinc complex. Inorganic and Nano-Metal Chemistry, 2017, 47, 597-602.	0.9	1
17	Metal complexes of a phenol-tailed porphyrin with different hydrogen bonds. Journal of Coordination Chemistry, 2016, 69, 2308-2317.	0.8	2
18	Rationalization of chirality induction and inversion in a zinc trisporphyrinate by a chiral monoalcohol. Dalton Transactions, 2016, 45, 8073-8080.	1.6	7

#	Article	IF	Citations
19	Crystallographic and Spectroscopic Studies of a Host–Guest Complex Consisting of a Novel Zinc Trisporphyrinate and a Chiral Monoamine. Inorganic Chemistry, 2016, 55, 3730-3737.	1.9	10
20	Discrimination between alkyl and aryl substituents of chiral monoamines by m-phthalic diamide-linked zinc bisporphyrinates. Dalton Transactions, 2015, 44, 12511-12515.	1.6	15
21	All high-spin (S = 2) iron(<scp>ii</scp>) hemes are NOT alike. Dalton Transactions, 2015, 44, 18301-18310.	1.6	13
22	Absolute Configurational Assignments of Amino Acid Esters by a CDâ€Sensitive Malonamideâ€Linked Zinc Bisporphyrinate Host. Chinese Journal of Chemistry, 2014, 32, 797-802.	2.6	8
23	The Role of Amino Acid Esters and the Amide Group in the Chiral Induction Process by a Novel Monoamideâ€Linked Monozinc Bisporphyrinate. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 2078-2085.	0.6	4
24	m-Phthalic Diamide-Linked Zinc Bisporphyrinate: Spontaneous Resolution of Its Crystals and Its Application in Chiral Recognition of Amino Acid Esters. Inorganic Chemistry, 2014, 53, 3298-3306.	1.9	37
25	Synthesis and characterization of Cu(II), Ni(II), and Fe(III) complexes of 5-(8-ethoxycarbonyl-1-naphthyl)-10,15,20-triphenyl porphyrin. Journal of Coordination Chemistry, 2013, 66, 2367-2377.	0.8	2
26	Syntheses and characterization of a series of asymmetric porphyrins containing an 8-ethoxycarbonyl-1-naphthyl group. Journal of Porphyrins and Phthalocyanines, 2013, 17, 392-398.	0.4	2
27	Probing Heme Vibrational Anisotropy: An Imidazole Orientation Effect?. Inorganic Chemistry, 2013, 52, 11361-11369.	1.9	10
28	Synthesis and Characterization of a Novel Phenolâ€tailed Porphyrin Ligand and Its Iron(III) Complex. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 676-680.	0.6	5
29	Synthesis and Characterization of Iron(III) Complexes of 5â€(8â€Carboxyâ€1â€naphthyl)â€10, 15, 20â€ŧritolyl Porphyrin. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 952-959.	0.6	2
30	Chiral recognition of amino acid esters by a novel oxalic amide-linked bisporphyrin. Dalton Transactions, 2013, 42, 7651.	1.6	27
31	Effects of Imidazole Deprotonation on Vibrational Spectra of High-Spin Iron(II) Porphyrinates. Inorganic Chemistry, 2013, 52, 3170-3177.	1.9	7
32	Different hydrogen-bonding patterns in two [Zn(ENTPP)] complexes with water or methanol as ligands. Journal of Coordination Chemistry, 2012, 65, 1905-1914.	0.8	1
33	Nuclear Resonance Vibrational Spectra of Five-Coordinate Imidazole-Ligated Iron(II) Porphyrinates. Inorganic Chemistry, 2012, 51, 1359-1370.	1.9	13
34	Synthesis and Characterization of 5,10―and 5,15â€Disubstituted Porphodimethenes. Chinese Journal of Chemistry, 2012, 30, 1715-1721.	2.6	2
35	A Schiff-base porphyrin complex with double intramolecular hydrogen bonds. Journal of Coordination Chemistry, 2011, 64, 2101-2109.	0.8	9
36	One-pot synthesis of 5-(8-ethoxycarbonyl-1-naphthyl)-10,15,20-triphenyl porphyrin (ENTPP) and spontaneous resolution upon crystallization. Journal of Porphyrins and Phthalocyanines, 2011, 15, 197-201.	0.4	14

#	Article	IF	CITATIONS
37	Just a Proton: Distinguishing the Two Electronic States of Five-Coordinate High-Spin Iron(II) Porphyrinates with Imidazole/ate Coordination. Journal of the American Chemical Society, 2010, 132, 3737-3750.	6.6	45
38	Electronic Configuration of Five-Coordinate High-Spin Pyrazole-Ligated Iron(II) Porphyrinates. Inorganic Chemistry, 2010, 49, 10984-10991.	1.9	11
39	Hydrogen Bonding Influence of 1,10-Phenanthroline on Five-Coordinate High-Spin Imidazole-Ligated Iron(II) Porphyrinates. Inorganic Chemistry, 2008, 47, 8884-8895.	1.9	21
40	Hydrogen Bonding Effects on the Electronic Configuration of Five-Coordinate High-Spin Iron(II) Porphyrinates. Journal of the American Chemical Society, 2008, 130, 3127-3136.	6.6	35
41	Four-Coordinate Iron(II) Porphyrinates:  Electronic Configuration Change by Intermolecular Interaction. Inorganic Chemistry, 2007, 46, 619-621.	1.9	42
42	Sulfoxide as a Ligand in Iron(II) Porphyrinates:  S- or O-Bound?. Inorganic Chemistry, 2007, 46, 8258-8263.	1.9	13
43	The highly saddled octaethyltetraphenylporphyrin-[H4OETPP] dichloride toluene 1.33-solvate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3128-o3128.	0.2	3
44	On Spin Hamiltonian fits to Mössbauer spectra of high-spin Fe(II) porphyrinate systems. Hyperfine Interactions, 2007, 170, 55-60.	0.2	11
45	Low-Spin Bis(2-methylimidazole)(octaethylporphyrinato)iron(III) Chloride (perp-[Fe(OEP)(2-MeHlm)2]Cl):Â A Consequence of Hydrogen Bonding?. Inorganic Chemistry, 2006, 45, 9721-9728.	1.9	15
46	Electronic Configuration of High-Spin Imidazole-Ligated Iron(II) Octaethylporphyrinates. Inorganic Chemistry, 2006, 45, 4177-4185.	1.9	49
47	High-spin [Fe(TTP)(THF)2]. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m830-m831.	0.2	6
48	Proton-Mediated Electron Configuration Change in High-Spin Iron(II) Porphyrinates. Journal of the American Chemical Society, 2005, 127, 15018-15019.	6.6	28
49	Electronic Configuration Assignment and the Importance of Low-Lying Excited States in High-Spin Imidazole-Ligated Iron(II) Porphyrinates. Journal of the American Chemical Society, 2005, 127, 5675-5688.	6.6	68
50	Ligand Orientation Control in Low-Spin Six-Coordinate (Porphinato)iron(II) Species. Inorganic Chemistry, 2005, 44, 4346-4358.	1.9	29
51	Title is missing!. Transition Metal Chemistry, 2003, 28, 350-355.	0.7	5
52	Intramolecular photo-substitution in the inclusion compound of mono[6-deoxy-6-(2-butenedinitrile-2,3-dimercapto sodium salt)]ââ,¬â€œÃŽÂ²-cyclodextrin with cyclopentadienyl manganese tricarbonyl in DMF solution. Dalton Transactions RSC, 2001, , 3052-3055.	2.3	7
53	The Inclusion Compound of a New Ionizable Derivative of .BETACyclodextrin with Ferrocenium Drug Chemical and Pharmaceutical Bulletin, 2001, 49, 818-821.	0.6	15
54	Racemic titanium(IV) complexes of salicylideneamino acids. Transition Metal Chemistry, 2001, 26, 700-703.	0.7	14

Chuan-Jiang Hu

#	Article	IF	CITATIONS
55	Title is missing!. Transition Metal Chemistry, 2001, 26, 295-299.	0.7	14
56	Title is missing!. Transition Metal Chemistry, 2001, 26, 136-139.	0.7	29
57	Title is missing!. Transition Metal Chemistry, 2000, 25, 141-144.	0.7	3