
Peter S Curtis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10176449/publications.pdf Version: 2024-02-01

DETED S CLIDTIS

#	Article	IF	CITATIONS
1	The longâ€ŧerm impacts of deer herbivory in determining temperate forest stand and canopy structural complexity. Journal of Applied Ecology, 2022, 59, 812-821.	1.9	23
2	Disturbance has variable effects on the structural complexity of a temperate forest landscape. Ecological Indicators, 2022, 140, 109004.	2.6	7
3	Disturbanceâ€accelerated succession increases the production of a temperate forest. Ecological Applications, 2021, 31, e02417.	1.8	15
4	COSORE: A community database for continuous soil respiration and other soilâ€atmosphere greenhouse gas flux data. Global Change Biology, 2020, 26, 7268-7283.	4.2	50
5	The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 2020, 7, 225.	2.4	646
6	Defining a spectrum of integrative traitâ€based vegetation canopy structural types. Ecology Letters, 2019, 22, 2049-2059.	3.0	52
7	Forest structure in space and time: Biotic and abiotic determinants of canopy complexity and their effects on net primary productivity. Agricultural and Forest Meteorology, 2018, 250-251, 181-191.	1.9	63
8	Forest aging, disturbance and the carbon cycle. New Phytologist, 2018, 219, 1188-1193.	3.5	75
9	Moderate Disturbance Has Similar Effects on Production Regardless of Site Quality and Composition. Forests, 2018, 9, 70.	0.9	5
10	Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest. Tree Physiology, 2017, 37, 1426-1435.	1.4	20
11	Contrasting strategies of hydraulic control in two codominant temperate tree species. Ecohydrology, 2017, 10, e1815.	1.1	102
12	Coupling Fine-Scale Root and Canopy Structure Using Ground-Based Remote Sensing. Remote Sensing, 2017, 9, 182.	1.8	12
13	Evaluating forest subcanopy response to moderate severity disturbance and contribution to ecosystem-level productivity and resilience. Forest Ecology and Management, 2016, 376, 135-147.	1.4	30
14	Disturbance, complexity, and succession of net ecosystem production in North America's temperate deciduous forests. Ecosphere, 2016, 7, e01375.	1.0	60
15	Modeling forest carbon cycle response to tree mortality: Effects of plant functional type and disturbance intensity. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2178-2193.	1.3	9
16	Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2788-2793.	3.3	265
17	Speciesâ€specific transpiration responses to intermediate disturbance in a northern hardwood forest. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 2292-2311.	1.3	76
18	Maintaining high rates of carbon storage in old forests: A mechanism linking canopy structure to forest function. Forest Ecology and Management, 2013, 298, 111-119.	1.4	130

PETER S CURTIS

#	Article	IF	CITATIONS
19	Multivariate Conditional Granger Causality Analysis for Lagged Response of Soil Respiration in a Temperate Forest. Entropy, 2013, 15, 4266-4284.	1.1	18
20	Canopy Structural Changes Following Widespread Mortality of Canopy Dominant Trees. Forests, 2013, 4, 537-552.	0.9	43
21	Raising the standards for ecological metaâ€analyses. New Phytologist, 2012, 195, 279-281.	3.5	11
22	A modelâ€data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis. Journal of Geophysical Research, 2012, 117, .	3.3	274
23	Uptake and partitioning of simulated atmospheric N inputs in Populus tremuloides– Pinus strobus forest mesocosms. Botany, 2011, 89, 379-386.	0.5	3
24	The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology, 2011, 92, 1818-1827.	1.5	200
25	Phenological and Temperature Controls on the Temporal Non-Structural Carbohydrate Dynamics of Populus grandidentata and Quercus rubra. Forests, 2010, 1, 65-81.	0.9	29
26	Attributing the variability of eddyâ€covariance CO ₂ flux measurements across temporal scales using geostatistical regression for a mixed northern hardwood forest. Global Biogeochemical Cycles, 2010, 24, .	1.9	28
27	The legacy of harvest and fire on ecosystem carbon storage in a north temperate forest. Global Change Biology, 2007, 13, 1935-1949.	4.2	158
28	Effects of Soil Carbon Amendment on Nitrogen Availability and Plant Growth in an Experimental Tallgrass Prairie Restoration. Restoration Ecology, 2004, 12, 568-574.	1.4	76
29	Biosphere–atmosphere interactions. New Phytologist, 2004, 162, 4-6.	3.5	7
30	Assessing elevated CO 2 responses using metaâ€analysis. New Phytologist, 2003, 160, 6-7.	3.5	6
31	A meta-analysis of elevated [CO2] effects on soybean (Clycine max) physiology, growth and yield. Global Change Biology, 2002, 8, 695-709.	4.2	426
32	Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytologist, 2002, 156, 9-26.	3.5	456
33	A meta-analytical test of elevated CO2 effects on plant respiration. Plant Ecology, 2002, 161, 251-261.	0.7	37
34	Neither mycorrhizal inoculation nor atmospheric CO 2 concentration has strong effects on pea root production and root loss. New Phytologist, 2001, 149, 283-290.	3.5	23
35	Aboveground Growth and Competition in Forest Gap Models: An Analysis for Studies of Climatic Change. Climatic Change, 2001, 51, 415-447.	1.7	48
36	Family―and populationâ€level responses to atmospheric CO 2 concentration: gas exchange and the allocation of C, N, and biomass in Plantago lanceolata (Plantaginaceae). American Journal of Botany, 2001, 88, 1080-1087.	0.8	17

#	Article	IF	CITATIONS
37	GAS EXCHANGE, LEAF NITROGEN, AND GROWTH EFFICIENCY OFPOPULUS TREMULOIDESIN A CO2-ENRICHED ATMOSPHERE. , 2000, 10, 3-17.		42
38	ATMOSPHERIC CO2, SOIL-N AVAILABILITY, AND ALLOCATION OF BIOMASS AND NITROGEN BYPOPULUS TREMULOIDES. , 2000, 10, 34-46.		37
39	ATMOSPHERIC CO2AND THE COMPOSITION AND FUNCTION OF SOIL MICROBIAL COMMUNITIES. , 2000, 10, 47-59.		45
40	INTERACTIVE EFFECTS OF ATMOSPHERIC CO2AND SOIL-N AVAILABILITY ON FINE ROOTS OFPOPULUS TREMULOIDES. , 2000, 10, 18-33.		67
41	Genotypic variation for condensed tannin production in trembling aspen (POPULUS TREMULOIDES,) Tj ETQq1 1 (1154-1159.	0.784314 0.8	rgBT /Over 61
42	THE META-ANALYSIS OF RESPONSE RATIOS IN EXPERIMENTAL ECOLOGY. Ecology, 1999, 80, 1150-1156.	1.5	2,977
43	THE META-ANALYSIS OF RESPONSE RATIOS IN EXPERIMENTAL ECOLOGY. , 1999, 80, 1150.		6
44	Response of soil biota to elevated atmospheric CO 2 in poplar model systems. Oecologia, 1998, 113, 247-251.	0.9	77
45	A meta-analysis of elevated CO 2 effects on woody plant mass, form, and physiology. Oecologia, 1998, 113, 299-313.	0.9	1,187
46	Heritable variation in stomatal responses to elevated CO2 in wild radish, Raphanus raphanistrum (Brassicaceae). American Journal of Botany, 1998, 85, 253-258.	0.8	30
47	Title is missing!. Plant Ecology, 1997, 130, 63-70.	0.7	58
48	Elevated Atmospheric Carbon Dioxide and Leaf Litter Chemistry: Influences on Microbial Respiration and Net Nitrogen Mineralization. Soil Science Society of America Journal, 1996, 60, 1571-1577.	1.2	64
49	Leaf gas exchange and nitrogen dynamics of N2-fixing, field-grown Alnus glutinosa under elevated atmospheric CO2. Global Change Biology, 1995, 1, 55-61.	4.2	54
50	Atmospheric CO2, soil nitrogen and turnover of fine roots. New Phytologist, 1995, 129, 579-585.	3.5	312
51	Interacting effects of soil fertility and atmospheric CO 2 on leaf area growth and carbon gain physiology in Populus × euramericana (Dode) Guinier. New Phytologist, 1995, 129, 253-263.	3.5	111
52	Genotype-specific effects of elevated CO2 on fecundity in wild radish (Raphanus raphanistrum). Oecologia, 1994, 97, 100-105.	0.9	99
53	Belowground responses to rising atmospheric CO2: Implications for plants, soil biota and ecosystem processes. Plant and Soil, 1994, 165, 1-6.	1.8	57
54	Above- and belowground response of Populus grandidentata to elevated atmospheric CO2 and soil N availability. Plant and Soil, 1994, 165, 45-51.	1.8	66

PETER S CURTIS

#	Article	IF	CITATIONS
55	Carbon cost of root systems: an architectural approach. Plant and Soil, 1994, 165, 161-169.	1.8	106
56	Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant and Soil, 1993, 151, 105-117.	1.8	618