Polina Golland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10176121/publications.pdf

Version: 2024-02-01

361413 361022 1,573 61 20 35 citations h-index g-index papers 63 63 63 2661 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Permutation Tests for Classification: Towards Statistical Significance in Image-Based Studies. Lecture Notes in Computer Science, 2003, 18, 330-341.	1.3	254
2	BrainPrint: A discriminative characterization of brain morphology. Neurolmage, 2015, 109, 232-248.	4.2	128
3	Detection and analysis of statistical differences in anatomical shape. Medical Image Analysis, 2005, 9, 69-86.	11.6	95
4	Interactive Whole-Heart Segmentation in Congenital Heart Disease. Lecture Notes in Computer Science, 2015, 9351, 80-88.	1.3	70
5	Identifying Shared Brain Networks in Individuals by Decoupling Functional and Anatomical Variability. Cerebral Cortex, 2016, 26, 4004-4014.	2.9	68
6	In Vivo Quantification of Placental Insufficiency by BOLD MRI: A Human Study. Scientific Reports, 2017, 7, 3713.	3.3	66
7	Coping with confounds in multivoxel pattern analysis: What should we do about reaction time differences? A comment on Todd, Nystrom & Done 2013. Neurolmage, 2014, 98, 506-512.	4.2	60
8	Joint super-resolution and synthesis of 1Âmm isotropic MP-RAGE volumes from clinical MRI exams with scans of different orientation, resolution and contrast. Neurolmage, 2021, 237, 118206.	4.2	52
9	White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts – The MRI-GENIE study. Neurolmage: Clinical, 2019, 23, 101884.	2.7	48
10	Non-rigid registration of 3D ultrasound for neurosurgery using automatic feature detection and matching. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 1525-1538.	2.8	40
11	Unsupervised Deep Learning for Bayesian Brain MRI Segmentation. Lecture Notes in Computer Science, 2019, 11766, 356-365.	1.3	38
12	Decoupling function and anatomy in atlases of functional connectivity patterns: Language mapping in tumor patients. Neurolmage, 2014, 103, 462-475.	4.2	36
13	White matter hyperintensity burden in acute stroke patients differs by ischemic stroke subtype. Neurology, 2020, 95, e79-e88.	1.1	34
14	TADPOLE Challenge: Accurate Alzheimer's Disease Prediction Through Crowdsourced Forecasting of Future Data. Lecture Notes in Computer Science, 2019, 11843, 1-10.	1.3	32
15	Frequency Diffeomorphisms for Efficient Image Registration. Lecture Notes in Computer Science, 2017, 10265, 559-570.	1.3	31
16	Detection of Spatial Activation Patterns as Unsupervised Segmentation of fMRI Data., 2007, 10, 110-118.		31
17	Placental MRI: Effect of maternal position and uterine contractions on placental BOLD MRI measurements. Placenta, 2020, 95, 69-77.	1.5	27
18	Spatiotemporal alignment of in utero BOLDâ€MRI series. Journal of Magnetic Resonance Imaging, 2017, 46, 403-412.	3.4	25

#	Article	IF	Citations
19	Placental MRI. Topics in Magnetic Resonance Imaging, 2019, 28, 285-297.	1.2	23
20	Unsupervised Discovery of Emphysema Subtypes in a Large Clinical Cohort. Lecture Notes in Computer Science, 2016, 10019, 180-187.	1.3	22
21	Iterative Segmentation from Limited Training Data: Applications to Congenital Heart Disease. Lecture Notes in Computer Science, 2018, 11045, 334-342.	1.3	21
22	BrainPainter: A Software for the Visualisation of Brain Structures, Biomarkers and Associated Pathological Processes. Lecture Notes in Computer Science, 2019, 11846, 112-120.	1.3	21
23	Patch-Based Discrete Registration of Clinical Brain Images. Lecture Notes in Computer Science, 2016, 9993, 60-67.	1.3	20
24	Distributed changes of the functional connectome in patients with glioblastoma. Scientific Reports, 2020, 10, 18312.	3.3	19
25	Fetal Pose Estimation in Volumetric MRI Using a 3D Convolution Neural Network. Lecture Notes in Computer Science, 2019, 11767, 403-410.	1.3	18
26	Functional Geometry Alignment and Localization of Brain Areas. Advances in Neural Information Processing Systems, 2010, 1, 1225-1233.	2.8	18
27	Using the variogram for vector outlier screening: application to feature-based image registration. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 1871-1880.	2.8	17
28	Deep Learning to Quantify Pulmonary Edema in Chest Radiographs. Radiology: Artificial Intelligence, 2021, 3, e190228.	5.8	17
29	Population Based Image Imputation. Lecture Notes in Computer Science, 2017, 10265, 659-671.	1.3	17
30	Deformable MRI-Ultrasound registration using correlation-based attribute matching for brain shift correction: Accuracy and generality in multi-site data. Neurolmage, 2019, 202, 116094.	4.2	16
31	Quantification and Analysis of Large Multimodal Clinical Image Studies: Application to Stroke. Lecture Notes in Computer Science, 2013, 8159, 18-30.	1.3	15
32	Contour-Driven Regression for Label Inference in Atlas-Based Segmentation. Lecture Notes in Computer Science, 2013, 16, 211-218.	1.3	14
33	How Machine Learning is Powering Neuroimaging to Improve Brain Health. Neuroinformatics, 2022, 20, 943-964.	2.8	13
34	Statistical shape analysis: From landmarks to diffeomorphisms. Medical Image Analysis, 2016, 33, 155-158.	11.6	12
35	MRI Radiomic Signature of White Matter Hyperintensities Is Associated With Clinical Phenotypes. Frontiers in Neuroscience, 2021, 15, 691244.	2.8	12
36	Segmentation of Tricuspid Valve Leaflets From Transthoracic 3D Echocardiograms of Children With Hypoplastic Left Heart Syndrome Using Deep Learning. Frontiers in Cardiovascular Medicine, 2021, 8, 735587.	2.4	12

#	Article	IF	CITATIONS
37	A topological encoding convolutional neural network for segmentation of 3D multiphoton images of brain vasculature using persistent homology., 2020, 2020, 4262-4271.		11
38	Excessive White Matter Hyperintensity Increases Susceptibility to Poor Functional Outcomes After Acute Ischemic Stroke. Frontiers in Neurology, 2021, 12, 700616.	2.4	11
39	Semi-supervised Learning for Fetal Brain MRI Quality Assessment with ROI Consistency. Lecture Notes in Computer Science, 2020, , 386-395.	1.3	11
40	Automated detection and reacquisition of motionâ€degraded images in fetal HASTE imaging at 3 T. Magnetic Resonance in Medicine, 2022, 87, 1914-1922.	3.0	11
41	Effective Reserve: A Latent Variable to Improve Outcome Prediction in Stroke. Journal of Stroke and Cerebrovascular Diseases, 2019, 28, 63-69.	1.6	10
42	Fast Geodesic Regression for Population-Based Image Analysis. Lecture Notes in Computer Science, 2017, 10433, 317-325.	1.3	10
43	Efficient Laplace Approximation for Bayesian Registration Uncertainty Quantification. Lecture Notes in Computer Science, 2018, 11070, 880-888.	1.3	9
44	Placental Flattening via Volumetric Parameterization. Lecture Notes in Computer Science, 2019, 11767, 39-47.	1.3	9
45	Low-Dimensional Statistics of Anatomical Variability via Compact Representation of Image Deformations. Lecture Notes in Computer Science, 2016, 9902, 166-173.	1.3	9
46	Probabilistic modeling of anatomical variability using a low dimensional parameterization of diffeomorphisms. Medical Image Analysis, 2017, 41, 55-62.	11.6	8
47	Diffusion-Weighted Imaging, MR Angiography, and Baseline Data in a Systematic Multicenter Analysis of 3,301 MRI Scans of Ischemic Stroke Patients—Neuroradiological Review Within the MRI-GENIE Study. Frontiers in Neurology, 2020, 11, 577.	2.4	5
48	Joint Inference on Structural and Diffusion MRI for Sequence-Adaptive Bayesian Segmentation of Thalamic Nuclei with Probabilistic Atlases. Lecture Notes in Computer Science, 2019, 11492, 767-779.	1.3	5
49	Invertible Filter Banks on the 2-Sphere. , 2006, , .		4
50	Disease Knowledge Transfer Across Neurodegenerative Diseases. Lecture Notes in Computer Science, 2019, 11765, 860-868.	1.3	4
51	Image-driven population analysis through mixture modeling. , 2009, , .		3
52	Spatial patterns and functional profiles for discovering structure in fMRI data., 2008, 2008, 1402-1409.		2
53	Predictive Modeling of Anatomy with Genetic and Clinical Data. Lecture Notes in Computer Science, 2015, 9351, 519-526.	1.3	2
54	Patient-Specific Conditional Joint Models of Shape, Image Features and Clinical Indicators. Lecture Notes in Computer Science, 2019, 11767, 93-101.	1.3	2

#	Article	IF	Citations
55	Spatial-Intensity Transform GANs for High Fidelity Medical Image-to-Image Translation. Lecture Notes in Computer Science, 2020, 12262, 749-759.	1.3	2
56	Categories and Functional Units: An Infinite Hierarchical Model for Brain Activations. Advances in Neural Information Processing Systems, 2010, 23, 1252-1260.	2.8	1
57	Guest Editorial Special Issue on Mathematical Modeling in Biomedical Image Analysis. IEEE Transactions on Medical Imaging, 2007, 26, 1133-1135.	8.9	0
58	Modeling anatomical heterogeneity in populations. , 2011, , .		0
59	Abstract WP204: Genetic Variant in VCAM1 Mediates Acute Infarct Size in Ischemic Stroke Patients. Stroke, 2017, 48, .	2.0	0
60	Abstract 136: Genetics of White Matter Hyperintensity Burden in Patients With Ischemic Stroke: The MRI-GENIE Study. Stroke, 2017, 48, .	2.0	0
61	Abstract WMP56: Genetics of Acute Ischemic Lesion Volume: the MRI-Genetics Interface Exploration (MRI-GENIE) Study. Stroke, 2018, 49, .	2.0	O