
Carol A Kelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10175839/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimate. BioScience, 2000, 50, 766.	2.2	562
2	Importance of Wetlands as Sources of Methyl Mercury to Boreal Forest Ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51, 1065-1076.	0.7	461
3	Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16586-16591.	3.3	398
4	Production and Loss of Methylmercury and Loss of Total Mercury from Boreal Forest Catchments Containing Different Types of Wetlands. Environmental Science & Technology, 1996, 30, 2719-2729.	4.6	287
5	Importance of the Forest Canopy to Fluxes of Methyl Mercury and Total Mercury to Boreal Ecosystems. Environmental Science & Technology, 2001, 35, 3089-3098.	4.6	258
6	Reactivity and Mobility of New and Old Mercury Deposition in a Boreal Forest Ecosystem during the First Year of the METAALICUS Study. Environmental Science & Technology, 2002, 36, 5034-5040.	4.6	247
7	Influence of Dissolved Organic Carbon, pH, and Microbial Respiration Rates on Mercury Methylation and Demethylation in Lake Water. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49, 17-22.	0.7	236
8	Prediction of biological acid neutralization in acid-sensitive lakes. Biogeochemistry, 1987, 3, 129-140.	1.7	232
9	The Rise and Fall of Mercury Methylation in an Experimental Reservoirâ€. Environmental Science & Technology, 2004, 38, 1348-1358.	4.6	184
10	Mechanisms of hydrogen ion neutralization in an experimentally acidified lake. Limnology and Oceanography, 1986, 31, 134-148.	1.6	173
11	The contributions of temperature and of the input of organic matter in controlling rates of sediment methanogenesis1. Limnology and Oceanography, 1981, 26, 891-897.	1.6	170
12	In situ sulphate stimulation of mercury methylation in a boreal peatland: Toward a link between acid rain and methylmercury contamination in remote environments. Global Biogeochemical Cycles, 1999, 13, 743-750.	1.9	158
13	The potential importance of bacterial processes in regulating rate of lake acidification1,2. Limnology and Oceanography, 1982, 27, 868-882.	1.6	153
14	Flux to the atmosphere of CH4and CO2from wetland ponds on the Hudson Bay lowlands (HBLs). Journal of Geophysical Research, 1994, 99, 1495.	3.3	150
15	Long-Term Wet and Dry Deposition of Total and Methyl Mercury in the Remote Boreal Ecoregion of Canada. Environmental Science & Technology, 2008, 42, 8345-8351.	4.6	150
16	Natural variability of carbon dioxide and net epilimnetic production in the surface waters of boreal lakes of different sizes. Limnology and Oceanography, 2001, 46, 1054-1064.	1.6	121
17	Is total mercury concentration a good predictor of methyl mercury concentration in aquatic systems?. Water, Air, and Soil Pollution, 1995, 80, 715-724.	1.1	95
18	Fluxes of methylmercury to the water column of a drainage lake: The relative importance of internal and external sources. Limnology and Oceanography, 2001, 46, 623-631.	1.6	95

CAROL A KELLY

#	Article	IF	CITATIONS
19	Disruption of the Nitrogen Cycle in Acidified Lakes. Science, 1988, 240, 1515-1517.	6.0	85
20	Evidence for facilitated uptake of Hg(II) by <i>Vibrio anguillarum</i> and <i>Escherichia coli</i> under anaerobic and aerobic conditions. Limnology and Oceanography, 2002, 47, 967-975.	1.6	85
21	Similarity of wholeâ€sediment molecular diffusion coefficients in freshwater sediments of low and high porosity. Limnology and Oceanography, 1991, 36, 335-341.	1.6	78
22	A comparison of the acidification efficiencies of nitric and sulfuric acids by two whole-lake addition experiments. Limnology and Oceanography, 1990, 35, 663-679.	1.6	72
23	Effects of lake acidification on rates of organic matter decomposition in sediments. Limnology and Oceanography, 1984, 29, 687-694.	1.6	69
24	Investigation of Uptake and Retention of Atmospheric Hg(II) by Boreal Forest Plants Using Stable Hg Isotopes. Environmental Science & Technology, 2009, 43, 4960-4966.	4.6	64
25	Turning attention to reservoir surfaces, a neglected area in greenhouse studies. Eos, 1994, 75, 332.	0.1	52
26	Wet deposition of methyl mercury in northwestern Ontario compared to other geographic locations. Water, Air, and Soil Pollution, 1995, 80, 405-414.	1.1	52
27	The role of terrestrial vegetation in atmospheric Hg deposition: Pools and fluxes of spike and ambient Hg from the METAALICUS experiment. Global Biogeochemical Cycles, 2012, 26, .	1.9	45
28	Experimental evidence for recovery of mercury-contaminated fish populations. Nature, 2022, 601, 74-78.	13.7	38
29	Evaluation of Mercury Toxicity as a Predictor of Mercury Bioavailability. Environmental Science & Technology, 2007, 41, 5685-5692.	4.6	35
30	Effect of pH on Intracellular Accumulation of Trace Concentrations of Hg(II) in <i>Escherichia coli</i> under Anaerobic Conditions, as Measured Using a <i>mer-lux</i> Bioreporter. Applied and Environmental Microbiology, 2008, 74, 667-675.	1.4	35
31	Simultaneous measurement of primary production by whole-lake and bottle radiocarbon additions1. Limnology and Oceanography, 1987, 32, 299-312.	1.6	34
32	Acidification by nitric acid ? Future considerations. Water, Air, and Soil Pollution, 1990, 50, 49.	1.1	32
33	The importance of floating peat to methane fluxes from flooded peatlands. Biogeochemistry, 1999, 47, 187-202.	1.7	26
34	Disruption of sulfur cycling and acid neutralization in lakes at low pH. Biogeochemistry, 1995, 28, 115-130.	1.7	25
35	Luminescence Facilitated Detection of Bioavailable Mercury in Natural Waters. , 1998, 102, 231-246.		24
36	Wet Deposition of Methyl Mercury in Northwestern Ontario Compared to Other Geographic		20

Locations. , 1995, , 405-414.

CAROL A KELLY

#	Article	IF	CITATIONS
37	Is Total Mercury Concentration a Good Predictor of Methyl Mercury Concentration in Aquatic Systems?. , 1995, , 715-724.		19
38	Transport of mercury on the finest particles results in high sediment concentrations in the absence of significant ongoing sources. Science of the Total Environment, 2018, 637-638, 1471-1479.	3.9	16
39	The importance of floating peat to methane fluxes from flooded peatlands. Biogeochemistry, 1999, 47, 187-202.	1.7	13
40	Mineralization rates of peat from eroding peat islands in reservoirs. Biogeochemistry, 2003, 64, 97-110.	1.7	9
41	Comment on "Dynamic model of in″ake alkalinity generation―by L. A. Baker and P. L. Brezonik. Water Resources Research, 1988, 24, 1825-1827.	1.7	5
42	Why the English–Wabigoon river system is still polluted by mercury 57 years after its contamination. Facets, 2021, 6, 2002-2027.	1.1	4
43	David William Schindler (1940–2021). Science, 2021, 372, 468-468.	6.0	0