Lijun Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/1017531/lijun-wang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

72
papers

3,202
citations

4-index

56
g-index

78
ext. papers

6.8
avg, IF

L-index

#	Paper	IF	Citations
72	Calcium orthophosphates: crystallization and dissolution. <i>Chemical Reviews</i> , 2008 , 108, 4628-69	68.1	643
71	Silicon Decreases Transpiration Rate and Conductance from Stomata of Maize Plants. <i>Journal of Plant Nutrition</i> , 2006 , 29, 1637-1647	2.3	178
70	A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. <i>New Phytologist</i> , 2015 , 206, 1063-1074	9.8	175
69	Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). <i>Environmental and Experimental Botany</i> , 2008 , 62, 300-307	5.9	151
68	Silicon Improves Water Use Efficiency in Maize Plants. <i>Journal of Plant Nutrition</i> , 2005 , 27, 1457-1470	2.3	128
67	Inhibition of cadmium ion uptake in rice (Oryza sativa) cells by a wall-bound form of silicon. <i>New Phytologist</i> , 2013 , 200, 691-699	9.8	125
66	A hemicellulose-bound form of silicon with potential to improve the mechanical properties and regeneration of the cell wall of rice. <i>New Phytologist</i> , 2015 , 206, 1051-1062	9.8	106
65	How amelogenin orchestrates the organization of hierarchical elongated microstructures of apatite. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 2293-300	3.4	93
64	Mimicking the Self-Organized Microstructure of Tooth Enamel. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 5892-5899	3.8	93
63	Dissolution at the nanoscale: self-preservation of biominerals. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 2697-701	16.4	90
62	Evidence for 'silicon' within the cell walls of suspension-cultured rice cells. <i>New Phytologist</i> , 2013 , 200, 700-709	9.8	86
61	Pathways to biomineralization and biodemineralization of calcium phosphates: the thermodynamic and kinetic controls. <i>Dalton Transactions</i> , 2009 , 2665-72	4.3	86
60	Amelogenin Promotes the Formation of Elongated Apatite Microstructures in a Controlled Crystallization System. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 6398-6404	3.8	74
59	Silicon induced cadmium tolerance of rice seedlings. <i>Journal of Plant Nutrition</i> , 2000 , 23, 1397-1406	2.3	71
58	Kinetics of calcium phosphate nucleation and growth on calcite: implications for predicting the fate of dissolved phosphate species in alkaline soils. <i>Environmental Science & Environmental Science </i>	-4 ¹ 2 ^{0.3}	70
57	Modulation of calcium oxalate crystallization by linear aspartic acid-rich peptides. <i>Langmuir</i> , 2006 , 22, 7279-85	4	70
56	A new model for nanoscale enamel dissolution. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 999-1005	3.4	64

55	Posner's cluster revisited: direct imaging of nucleation and growth of nanoscale calcium phosphate clusters at the calcite-water interface. <i>CrystEngComm</i> , 2012 , 14, 6252	3.3	60
54	Phosphorylation of osteopontin is required for inhibition of calcium oxalate crystallization. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 9151-7	3.4	60
53	Size-effects in the dissolution of hydroxyapatite: an understanding of biological demineralization. Journal of Materials Chemistry, 2004 , 14, 2341		54
52	Specific effects of background electrolytes on the kinetics of step propagation during calcite growth. <i>Geochimica Et Cosmochimica Acta</i> , 2011 , 75, 3803-3814	5.5	51
51	Nanosized particles in bone and dissolution insensitivity of bone mineral. <i>Biointerphases</i> , 2006 , 1, 106-11	11.8	48
50	In situ imaging of interfacial precipitation of phosphate on Goethite. <i>Environmental Science & Environmental Science & Technology</i> , 2015 , 49, 4184-92	10.3	42
49	Direct Observation of Spiral Growth, Particle Attachment, and Morphology Evolution of Hydroxyapatite. <i>Crystal Growth and Design</i> , 2016 , 16, 4509-4518	3.5	36
48	Direct imaging of nanoscale dissolution of dicalcium phosphate dihydrate by an organic ligand: concentration matters. <i>Environmental Science & Environmental Science & Environ</i>	10.3	33
47	Constant Composition Studies Verify the Utility of the Cabreral ermilyea (C-V) Model in Explaining Mechanisms of Calcium Oxalate Monohydrate Crystallization. <i>Crystal Growth and Design</i> , 2006 , 6, 1769-7	1 3 775	29
46	iTRAQ-based proteomic analysis reveals the mechanisms of silicon-mediated cadmium tolerance in rice (Oryza sativa) cells. <i>Plant Physiology and Biochemistry</i> , 2016 , 104, 71-80	5.4	28
45	Phosphorylated osteopontin peptides inhibit crystallization by resisting the aggregation of calcium phosphate nanoparticles. <i>CrystEngComm</i> , 2012 , 14, 8037	3.3	26
44	Coupled dissolution and precipitation at the cerussite-phosphate solution interface: implications for immobilization of lead in soils. <i>Environmental Science & Environmental </i>	10.3	25
43	Inhibition of Pathological Mineralization of Calcium Phosphate by Phosphorylated Osteopontin Peptides through Step-Specific Interactions. <i>Chemistry of Materials</i> , 2014 , 26, 5605-5612	9.6	23
42	Synergistic effects between [Si-hemicellulose matrix] ligands and Zn ions in inhibiting Cd ion uptake in rice (Oryza sativa) cells. <i>Planta</i> , 2017 , 245, 965-976	4.7	18
41	Dynamics of crystallization and dissolution of calcium orthophosphates at the near-molecular level. <i>Science Bulletin</i> , 2011 , 56, 713-721		18
40	Underlying Role of Brushite in Pathological Mineralization of Hydroxyapatite. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 2874-2881	3.4	17
39	Dissolution at the Nanoscale: Self-Preservation of Biominerals. <i>Angewandte Chemie</i> , 2004 , 116, 2751-27	5,5 6	17
38	An Evolutionarily Conserved Subdomain in Amelotin Promotes Amorphous Calcium Phosphate-to-Hydroxyapatite Phase Transition. <i>Crystal Growth and Design</i> , 2019 , 19, 2104-2113	3.5	16

37	Mechanisms of Modulation of Calcium Phosphate Pathological Mineralization by Mobile and Immobile Small-Molecule Inhibitors. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 1580-1587	3.4	15
36	Direct Observation of Simultaneous Immobilization of Cadmium and Arsenate at the Brushite-Fluid Interface. <i>Environmental Science & Environmental Scie</i>	10.3	14
35	Templated Biomineralization on Self-Assembled Protein Nanofibers Buried in Calcium Oxalate Raphides of Musa spp <i>Chemistry of Materials</i> , 2014 , 26, 3862-3869	9.6	14
34	Direct observations of the modification of calcite growth morphology by Li+ through selectively stabilizing an energetically unfavourable face. <i>CrystEngComm</i> , 2011 , 13, 3962	3.3	14
33	Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy. <i>Accounts of Chemical Research</i> , 2020 , 53, 1196-1205	24.3	14
32	Molecular Understanding of Humic Acid-Limited Phosphate Precipitation and Transformation. <i>Environmental Science & Environmental Science & Environment</i>	10.3	14
31	Imaging Organophosphate and Pyrophosphate Sequestration on Brucite by in Situ Atomic Force Microscopy. <i>Environmental Science & Environmental Science </i>	10.3	13
30	Direct Observations of the Occlusion of Soil Organic Matter within Calcite. <i>Environmental Science & Environmental & Environme</i>	10.3	13
29	Interfacial Precipitation of Phosphate on Hematite and Goethite. <i>Minerals (Basel, Switzerland)</i> , 2018 , 8, 207	2.4	13
28	Role of Alcoholic Hydroxyls of Dicarboxylic Acids in Regulating Nanoscale Dissolution Kinetics of Dicalcium Phosphate Dihydrate. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 3920-3928	8.3	12
27	Molecular-Scale Investigations Reveal Noncovalent Bonding Underlying the Adsorption of Environmental DNA on Mica. <i>Environmental Science & Environmental Science & Environment</i>	10.3	12
26	Visualizing Organophosphate Precipitation at the Calcite-Water Interface by in Situ Atomic-Force Microscopy. <i>Environmental Science & Environmental Sc</i>	10.3	12
25	Humic Acids Limit the Precipitation of Cadmium and Arsenate at the Brushite-Fluid Interface. <i>Environmental Science & Environmental Science & Environm</i>	10.3	12
24	Cell wall-bound silicon optimizes ammonium uptake and metabolism in rice cells. <i>Annals of Botany</i> , 2018 , 122, 303-313	4.1	12
23	Energetic Basis for Inhibition of Calcium Phosphate Biomineralization by Osteopontin. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 5968-5976	3.4	11
22	In Situ Atomic Force Microscopy Imaging of Octacalcium Phosphate Crystallization and Its Modulation by Amelogenin C-Terminus. <i>Crystal Growth and Design</i> , 2017 , 17, 2194-2202	3.5	11
21	Direct Nanoscale Imaging of Calcium Oxalate Crystallization on Brushite Reveals the Mechanisms Underlying Stone Formation. <i>Crystal Growth and Design</i> , 2015 , 15, 3038-3045	3.5	11
20	Dynamics of Biomineralization and Biodemineralization. <i>Metal Ions in Life Sciences</i> , 2010 , 4, 413-456	2.6	11

(2021-2015)

19	Monomeric Amelogenin C-Terminus Modulates Biomineralization Dynamics of Calcium Phosphate. <i>Crystal Growth and Design</i> , 2015 , 15, 4490-4497	3.5	10
18	Phosphorylated/Nonphosphorylated Motifs in Amelotin Turn Off/On the Acidic Amorphous Calcium Phosphate-to-Apatite Phase Transformation. <i>Langmuir</i> , 2020 , 36, 2102-2109	4	7
17	Atomic force microscopy imaging of classical and nonclassical surface growth dynamics of calcium orthophosphates. <i>CrystEngComm</i> , 2018 , 20, 2886-2896	3.3	6
16	Dynamics and Molecular Mechanism of Phosphate Binding to a Biomimetic Hexapeptide. <i>Environmental Science & Environmental Scie</i>	10.3	6
15	Inhibition of Spiral Growth and Dissolution at the Brushite (010) Interface by Chondroitin 4-Sulfate. Journal of Physical Chemistry B, 2019 , 123, 845-851	3.4	6
14	Single-molecule determination of the phase- and facet-dependent adsorption of alginate on iron oxides. <i>Environmental Science: Nano</i> , 2020 , 7, 954-962	7.1	5
13	A Highly Conserved Motif within the Amelotin Protein Controls the Surface Growth of Brushite. <i>Crystal Growth and Design</i> , 2018 , 18, 2502-2509	3.5	5
12	Face-Specific Occlusion of Lipid Vesicles within Calcium Oxalate Monohydrate. <i>Crystal Growth and Design</i> , 2021 , 21, 2398-2404	3.5	4
11	Facet-Specific Dissolution Precipitation at Struvite Water Interfaces. <i>Crystal Growth and Design</i> , 2021 , 21, 4111-4120	3.5	4
10	Nanoscale imaging of the simultaneous occlusion of nanoplastics and glyphosate within soil minerals. <i>Environmental Science: Nano</i> ,	7.1	4
9	Occluded Organic Nanofibers Template the Hierarchical Organization of Nanosized Particles in Calcium Oxalate Raphides of Musa spp. <i>Crystal Growth and Design</i> , 2018 , 18, 1155-1161	3.5	3
8	Role of Hyperoxaluria/Hypercalciuria in Controlling the Hydrate Phase Selection of Pathological Calcium Oxalate Mineralization. <i>Crystal Growth and Design</i> , 2021 , 21, 683-691	3.5	3
7	Organized Assembly of Fluorapatite Nanorods Controlled by Amelotin: Implications for Enamel Regeneration. <i>ACS Applied Nano Materials</i> , 2019 , 2, 7566-7576	5.6	2
6	Organically-bound silicon enhances resistance to enzymatic degradation and nanomechanical properties of rice plant cell walls. <i>Carbohydrate Polymers</i> , 2021 , 266, 118057	10.3	2
5	Halide-Dependent Dissolution of Dicalcium Phosphate Dihydrate and Its Modulation by an Organic Ligand. <i>Crystal Growth and Design</i> , 2017 , 17, 3868-3876	3.5	1
4	Molecular insight into the interfacial chemical functionalities regulating heterogeneous calcium-arsenate nucleation. <i>Journal of Colloid and Interface Science</i> , 2020 , 575, 464-471	9.3	1
3	Dynamic force spectroscopy for quantifying single-molecule organothineral interactions. <i>CrystEngComm</i> , 2021 , 23, 11-23	3.3	1
2	Modulation of the calcium oxalate dihydrate to calcium oxalate monohydrate phase transition with citrate and zinc ions. <i>CrystEngComm</i> , 2021 , 23, 8588-8600	3.3	O

Crystallization via Nonclassical Pathways: Nanoscale Imaging of Mineral Surfaces. *ACS Symposium Series*,1-35

0.4 0