
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10174388/publications.pdf Version: 2024-02-01

PEHREN KADID

#	Article	IF	CITATIONS
1	An IL-9–pulmonary macrophage axis defines the allergic lung inflammatory environment. Science Immunology, 2022, 7, eabi9768.	11.9	29
2	Inhibition of BTK and PI3KĨ´ impairs the development of human JMML stem and progenitor cells. Molecular Therapy, 2022, 30, 2505-2521.	8.2	2
3	Targeting SHP2 phosphatase in hematological malignancies. Expert Opinion on Therapeutic Targets, 2022, 26, 319-332.	3.4	10
4	Nuclear translocation of TFE3 under hypoxia enhances the engraftment of human hematopoietic stem cells. Leukemia, 2022, 36, 2144-2148.	7.2	3
5	Physioxia-induced downregulation of <i>Tet2</i> in hematopoietic stem cells contributes to enhanced self-renewal. Blood, 2022, 140, 1263-1277.	1.4	8
6	SSMD: a semi-supervised approach for a robust cell type identification and deconvolution of mouse transcriptomics data. Briefings in Bioinformatics, 2021, 22, .	6.5	3
7	Bmi1 Regulates Wnt Signaling in Hematopoietic Stem and Progenitor Cells. Stem Cell Reviews and Reports, 2021, 17, 2304-2313.	3.8	5
8	Immunotherapy Targeting ST2/IL-33 Signaling in Myeloid Leukemia Stem Cells. Blood, 2021, 138, 23-23.	1.4	4
9	Obesity-Induced Inflammation Co-Operates with Clonal Hematopoiesis of Indeterminate Potential (CHIP) Mutants to Promote Leukemia Development and Cardiovascular Disease. Blood, 2021, 138, 1094-1094.	1.4	6
10	Putative Mechanisms Underlying Cardiovascular Disease Associated with Clonal Hematopoiesis of Indeterminate Potential. Stem Cell Reports, 2020, 15, 292-306.	4.8	4
11	Targeting Bim via a IncRNA Morrbid Regulates the Survival of Preleukemic and Leukemic Cells. Cell Reports, 2020, 31, 107816.	6.4	15
12	Driver Mutations in Leukemia Promote Disease Pathogenesis through a Combination of Cell-Autonomous and Niche Modulation. Stem Cell Reports, 2020, 15, 95-109.	4.8	8
13	Clonal Hematopoiesis of Indeterminate Potential as a Novel Risk Factor for Donor-Derived Leukemia. Stem Cell Reports, 2020, 15, 279-291.	4.8	10
14	Fate of Hematopoiesis During Aging. What Do We Really Know, and What are its Implications?. Stem Cell Reviews and Reports, 2020, 16, 1020-1048.	3.8	19
15	Promoter demethylation of the asparagine synthetase gene is required for ATF4-dependent adaptation to asparagine depletion. Journal of Biological Chemistry, 2019, 294, 18674-18684.	3.4	26
16	Mutant p53 enhances leukemia-initiating cell self-renewal to promote leukemia development. Leukemia, 2019, 33, 1535-1539.	7.2	13
17	Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation. Cell Reports, 2019, 26, 1854-1868.e5.	6.4	91
18	DNA damage on the DOCK in FLT3-ITD-driven acute myeloid leukemia. Haematologica, 2019, 104, 2330-2332.	3.5	0

#	Article	IF	CITATIONS
19	SHP2 inhibition reduces leukemogenesis in models of combined genetic and epigenetic mutations. Journal of Clinical Investigation, 2019, 129, 5468-5473.	8.2	29
20	The mirn23a and mirn23b microrna clusters are necessary for proper hematopoietic progenitor cell production and differentiation. Experimental Hematology, 2018, 59, 14-29.	0.4	16
21	Kinase inhibitors in clinical practice: An expanding world. Journal of Allergy and Clinical Immunology, 2018, 141, 522-524.	2.9	4
22	A quantitative proteomic analysis of cofilin phosphorylation in myeloid cells and its modulation using the LIM kinase inhibitor Pyr1. PLoS ONE, 2018, 13, e0208979.	2.5	11
23	Inhibition of Inflammatory Signaling in Tet2 Mutant Preleukemic Cells Mitigates Stress-Induced Abnormalities and Clonal Hematopoiesis. Cell Stem Cell, 2018, 23, 833-849.e5.	11.1	242
24	P38α/JNK signaling restrains erythropoiesis by suppressing Ezh2-mediated epigenetic silencing of Bim. Nature Communications, 2018, 9, 3518.	12.8	25
25	Loss of epigenetic regulator TET2 and oncogenic KIT regulate myeloid cell transformation via PI3K pathway. JCI Insight, 2018, 3, .	5.0	18
26	Consecutive epigenetically-active agent combinations act in ID1-RUNX3-TET2 and HOXA pathways for Flt3ITD+ve AML. Oncotarget, 2018, 9, 5703-5715.	1.8	2
27	Rapid development of myeloproliferative neoplasm in mice with <i>Ptpn11D61Y</i> mutation and haploinsufficient for <i>Dnmt3a</i> . Oncotarget, 2018, 9, 6055-6061.	1.8	4
28	p190-B RhoGAP and intracellular cytokine signals balance hematopoietic stem and progenitor cell self-renewal and differentiation. Nature Communications, 2017, 8, 14382.	12.8	35
29	Role of mTORC1–S6K1 signaling pathway in regulation of hematopoietic stem cell and acute myeloid leukemia. Experimental Hematology, 2017, 50, 13-21.	0.4	35
30	Specifically differentiated T cell subset promotes tumor immunity over fatal immunity. Journal of Experimental Medicine, 2017, 214, 3577-3596.	8.5	42
31	Pharmacological inhibition of AKT activity in human CD34+ cells enhances their ability to engraft immunodeficient mice. Experimental Hematology, 2017, 45, 74-84.	0.4	5
32	LIM kinases: cofilin and beyond. Oncotarget, 2017, 8, 41749-41763.	1.8	73
33	Pharmacologic inhibition of PI3K p110δin mutant Shp2E76K-expressing mice. Oncotarget, 2017, 8, 84776-84781.	1.8	5
34	Regulation of Hematopoietic Stem Cell Self-Renewal and Leukemia Maintenance by the PI3K-mTORC1 Pathway. Current Stem Cell Reports, 2016, 2, 368-378.	1.6	12
35	LIM Kinase Inhibitor Pyr1 Reduces the Growth and Metastatic Load of Breast Cancers. Cancer Research, 2016, 76, 3541-3552.	0.9	28
36	Sepsis Induces Hematopoietic Stem Cell Exhaustion and Myelosuppression through Distinct Contributions of TRIF and MYD88. Stem Cell Reports, 2016, 6, 940-956.	4.8	91

#	Article	IF	CITATIONS
37	<i>Nf1</i> ^{+/â^'} monocytes/macrophages induce neointima formation via CCR2 activation. Human Molecular Genetics, 2016, 25, 1129-1139.	2.9	13
38	S6K1 regulates hematopoietic stem cell self-renewal and leukemia maintenance. Journal of Clinical Investigation, 2016, 126, 2621-2625.	8.2	33
39	Targeting LIM kinases in taxane resistant tumors. Oncotarget, 2016, 7, 50816-50817.	1.8	6
40	ROCK1 via LIM kinase regulates growth, maturation and actin based functions in mast cells. Oncotarget, 2016, 7, 16936-16947.	1.8	15
41	Enhancing Hematopoietic Stem Cell Transplantation Efficacy by Mitigating Oxygen Shock. Cell, 2015, 161, 1553-1565.	28.9	273
42	ST2 blockade reduces sST2-producing T cells while maintaining protective mST2-expressing T cells during graft-versus-host disease. Science Translational Medicine, 2015, 7, 308ra160.	12.4	131
43	Targeting phosphatidylinositol-3-kinase pathway for the treatment of Philadelphia-negative myeloproliferative neoplasms. Molecular Cancer, 2015, 14, 118.	19.2	25
44	Role of LIM Kinase in Oncogenic Signaling from FLT3 and KIT Receptors and Its Targeting in Myeloid Leukemia. Blood, 2015, 126, 1257-1257.	1.4	5
45	IL-33/ST2 Triggering of IL-9-Secreting T Cells Alters the Balance of Fatal Immunity and Tumor Immunity. Blood, 2015, 126, 231-231.	1.4	3
46	Mastocytosis: a mutated KIT receptor induced myeloproliferative disorder. Oncotarget, 2015, 6, 18250-18264.	1.8	53
47	Imipramine Blue Sensitively and Selectively Targets FLT3 and c-Kit Mutant Acute Myeloid Leukemia. Blood, 2015, 126, 3688-3688.	1.4	0
48	S6K1 Regulates Self-Renewal of Leukemia Initiating Cells and Normal Hematopoietic Stem Cells. Blood, 2015, 126, 442-442.	1.4	0
49	Novel Functional Roles for Ten-Eleven-Translocation 2 (Tet2) in Normal and Leukemic Growth of Mast Cells. Blood, 2015, 126, 775-775.	1.4	0
50	Novel Mechanisms of Growth Inhibition By Histone Deacetylase Inhibitors in MPN. Blood, 2015, 126, 1633-1633.	1.4	2
51	Internal Tandem Duplication Mutations in FLT3 Gene Augment Chemotaxis to Cxcl12 Protein by Blocking the Down-regulation of the Rho-associated Kinase via the Cxcl12/Cxcr4 Signaling Axis. Journal of Biological Chemistry, 2014, 289, 31053-31065.	3.4	21
52	Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis. Cell Reports, 2014, 9, 1333-1348.	6.4	51
53	Ras-Mek-Erk Signaling Regulates Nf1 Heterozygous Neointima Formation. American Journal of Pathology, 2014, 184, 79-85.	3.8	24
54	Global microRNA expression is essential for murine mast cell development inÂvivo. Experimental Hematology, 2014, 42, 919-923.e1.	0.4	10

#	Article	IF	CITATIONS
55	Notch-Dependent Repression of miR-155 in the Bone Marrow Niche Regulates Hematopoiesis in an NF-κB-Dependent Manner. Cell Stem Cell, 2014, 15, 51-65.	11.1	161
56	The small GTPase Rap1b negatively regulates neutrophil chemotaxis and transcellular diapedesis by inhibiting Akt activation. Journal of Experimental Medicine, 2014, 211, 1741-1758.	8.5	55
57	PI3K p110δ uniquely promotes gain-of-function Shp2-induced GM-CSF hypersensitivity in a model of JMML. Blood, 2014, 123, 2838-2842.	1.4	35
58	Oncogenic KIT-induced aggressive systemic mastocytosis requires SHP2/PTPN11 phosphatase for disease progression in mice. Oncotarget, 2014, 5, 6130-6141.	1.8	14
59	Mitigation of a Newly Discovered Phenomenon, Extra Physiologic Oxygen Shock/Stress (EPHOSS), Mediated By the Mitochondria Permeability Transition Pore, Greatly Improves Stem Cell Collection and Transplantation. Blood, 2014, 124, 2905-2905.	1.4	4
60	PRL2 Maintains Hematopoietic Stem and Progenitor Cells Through Regulating SCF/KIT Signaling. Blood, 2013, 122, 3674-3674.	1.4	0
61	Role of intracellular tyrosines in activating KIT-induced myeloproliferative disease. Leukemia, 2012, 26, 1499-1506.	7.2	12
62	ROCK1 Functions As a Critical Regulator of Stress Erythropoiesis and Survival by Regulating p53. Blood, 2011, 118, 916-916.	1.4	11
63	Repression of ROCKII by GATA-1 Inhibits Cell Proliferation during Erythroid Maturation Blood, 2007, 110, 3345-3345.	1.4	2
64	ROCKI Regulates Critical Functions in Macrophages and Neutrophils Blood, 2007, 110, 2406-2406.	1.4	0
65	Focal Adhesion Kinase Regulates Critical Functions in Hematopoiesis Blood, 2007, 110, 1407-1407.	1.4	Ο
66	ROCKI Regulates Growth, Maturation and Migration of Mast Cells Blood, 2007, 110, 2191-2191.	1.4	0
67	Requirement for p85α Regulatory Subunit of Class IA PI3Kinase and Rac2 GTPase in Myeloproliferative Disease Driven by Activation Loop Mutant of KIT Blood, 2007, 110, 89-89.	1.4	Ο
68	Kit Signaling Regulates Mitf Expression in Mastocytosis Blood, 2006, 108, 3601-3601.	1.4	3
69	Gleevec Resistant Activating Mutation of c-Kit (D816V) Demonstrates Ligand Independent Growth and Promiscuous Cooperation with Multiple Cytokine Receptors Via the p851± Subunit of Class IA PI-3Kinase Blood, 2005, 106, 3530-3530.	1.4	Ο
70	Kit PY567- Directed Signals Are Important for Efficient Erythroid Progenitor Cell Proliferation and Survival, and Are Attenuated by Kit PY569 Blood, 2004, 104, 2168-2168.	1.4	0
71	Role of p38 and ERK MAP kinase in proliferation of erythroid progenitors in response to stimulation by soluble and membrane isoforms of stem cell factor. Blood, 2002, 100, 1287-93.	1.4	12
72	The Presence of Novel Amino Acids in the Cytoplasmic Domain of Stem Cell Factor Results in Hematopoietic Defects inSteel17H Mice. Blood, 1999, 94, 1915-1925.	1.4	24