Allan L Carroll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10171995/publications.pdf

Version: 2024-02-01

201674 6,106 53 27 h-index citations papers

g-index 54 54 54 5418 docs citations times ranked citing authors all docs

175258

52

#	Article	IF	CITATIONS
1	Landscape predictions of western balsam bark beetle activity implicate warm temperatures, a longer growing season, and drought in widespread irruptions across British Columbia. Forest Ecology and Management, 2022, 508, 120047.	3.2	7
2	Numbers matter: how irruptive bark beetles initiate transition to self-sustaining behavior during landscape-altering outbreaks. Oecologia, 2022, 198, 681-698.	2.0	9
3	Patterns of infestation by subcortical insects (Coleoptera: Buprestidae, Cerambycidae) after widespread wildfires in mature Douglas-fir (Pseudotsuga menziesii) forests. Forest Ecology and Management, 2022, 513, 120203.	3.2	3
4	In the Pursuit of Synchrony: Northward Shifts in Western Spruce Budworm Outbreaks in a Warming Environment. Frontiers in Forests and Global Change, 2022, 5, .	2.3	1
5	Selection of entomopathogenic fungus Beauveria bassiana (Deuteromycotina: Hyphomycetes) for the biocontrol of Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae) in Western Canada. Applied Microbiology and Biotechnology, 2021, 105, 2541-2557.	3.6	12
6	Managing Wildlife Habitat: Complex Interactions With Biotic and Abiotic Disturbances. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	11
7	A Disrupted Historical Fire Regime in Central British Columbia. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	20
8	Climateâ€induced outbreaks in highâ€elevation pines are driven primarily by immigration of bark beetles from historical hosts. Global Change Biology, 2021, 27, 5786-5805.	9.5	5
9	Multiyear weather anomalies associated with range shifts by the mountain pine beetle preceding large epidemics. Forest Ecology and Management, 2019, 438, 86-95.	3.2	33
10	Genetic and genomic evidence of niche partitioning and adaptive radiation in mountain pine beetle fungal symbionts. Molecular Ecology, 2017, 26, 2077-2091.	3.9	52
11	Predicting the risk of mountain pine beetle spread to eastern pine forests: Considering uncertainty in uncertain times. Forest Ecology and Management, 2017, 396, 11-25.	3.2	59
12	Consequences of distributional asymmetry in a warming environment: invasion of novel forests by the mountain pine beetle. Ecosphere, 2017, 8, e01778.	2.2	25
13	Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography, 2017, 40, 1426-1435.	4.5	209
14	Breeding matters: Natal experience influences population state-dependent host acceptance by an eruptive insect herbivore. PLoS ONE, 2017, 12, e0172448.	2.5	12
15	The influence of variation in host tree monoterpene composition on secondary attraction by an invasive bark beetle: Implications for range expansion and potential host shift by the mountain pine beetle. Forest Ecology and Management, 2016, 359, 59-64.	3.2	27
16	Population dynamics and epidemiology of four species of <i>Dendroctonus </i> (Coleoptera:) Tj ETQq0 0 0 rgBT /0	Overlock 1	.0 Тf 50 142 Т
17	Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks. Scientific Reports, 2015, 5, 8495.	3.3	62
18	Characterisation of attacks made by the mountain pine beetle (Coleoptera: Curculionidae) during its endemic population phase. Canadian Entomologist, 2014, 146, 271-284.	0.8	27

#	Article	IF	CITATIONS
19	Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, <i>Dendroctonus ponderosae </i> (Coleoptera: Curculionidae). PeerJ, 2014, 2, e240.	2.0	49
20	Acoustics of the mountain pine beetle (<i>Dendroctonus ponderosae</i>) (Curculionidae, Scolytinae): sonic, ultrasonic, and vibration characteristics. Canadian Journal of Zoology, 2013, 91, 235-244.	1.0	34
21	The Legacy of Attack: Implications of High Phloem Resin Monoterpene Levels in Lodgepole Pines Following Mass Attack by Mountain Pine Beetle, <l>Dendroctonus ponderosae</l> Hopkins. Environmental Entomology, 2012, 41, 392-398.	1.4	32
22	Breach of the northern Rocky Mountain geoclimatic barrier: initiation of range expansion by the mountain pine beetle. Journal of Biogeography, 2012, 39, 1112-1123.	3.0	109
23	Climate change could alter the distribution of mountain pine beetle outbreaks in western Canada. Ecography, 2012, 35, 211-223.	4.5	122
24	Efficacy of tree defense physiology varies with bark beetle population density: a basis for positive feedback in eruptive species. Canadian Journal of Forest Research, 2011, 41, 1174-1188.	1.7	250
25	Insights into herbivore distribution and abundance: oviposition preferences of western hemlock and phantom hemlock loopers. Canadian Entomologist, 2011, 143, 72-81.	0.8	2
26	Rating Introgression between Lodgepole and Jack Pine at the Individual Tree Level Using Morphological Traits. Northern Journal of Applied Forestry, 2011, 28, 138-145.	0.5	9
27	Facilitation in bark beetles: endemic mountain pine beetle gets a helping hand. Agricultural and Forest Entomology, 2011, 13, 37-43.	1.3	44
28	Incoming! Association of landscape features with dispersing mountain pine beetle populations during a range expansion event in western Canada. Landscape Ecology, 2011, 26, 1097-1110.	4.2	44
29	Fungal associates of the lodgepole pine beetle, Dendroctonus murrayanae. Antonie Van Leeuwenhoek, 2011, 100, 231-244.	1.7	27
30	Climate change and range expansion of an aggressive bark beetle: evidence of higher beetle reproduction in $na\tilde{A}$ ve host tree populations. Journal of Applied Ecology, 2010, 47, 1036-1043.	4.0	215
31	Differences in the constitutive terpene profile of lodgepole pine across a geographical range in British Columbia, and correlation with historical attack by mountain pine beetle. Canadian Entomologist, 2010, 142, 557-573.	0.8	46
32	Potential for range expansion of mountain pine beetle into the boreal forest of North America. Canadian Entomologist, 2010, 142, 415-442.	0.8	340
33	Challenges for the operational detection of mountain pine beetle green attack with remote sensing. Forestry Chronicle, 2009, 85, 32-38.	0.6	40
34	Life history of a secondary bark beetle, <i>Pseudips mexicanus</i> (Coleoptera: Curculionidae:) Tj ETQq0 0 0 rgE	3T /Oyerloo	:k 10 Tf 50 14
35	Movement of outbreak populations of mountain pine beetle: influences of spatiotemporal patterns and climate. Ecography, 2008, 31, 348-358.	4.5	166
36	Mountain pine beetle and forest carbon feedback to climate change. Nature, 2008, 452, 987-990.	27.8	1,582

#	Article	IF	CITATIONS
37	Cross-scale Drivers of Natural Disturbances Prone to Anthropogenic Amplification: The Dynamics of Bark Beetle Eruptions. BioScience, 2008, 58, 501-517.	4.9	1,410
38	Autologistic regression analysis of spatial-temporal binary data via Monte Carlo maximum likelihood. Journal of Agricultural, Biological, and Environmental Statistics, 2008, 13, 84-98.	1.4	28
39	Movement of outbreak populations of mountain pine beetle: influences of spatiotemporal patterns and climate. Ecography, 2008, .	4. 5	0
40	Landscape level analysis of mountain pine beetle in British Columbia, Canada: spatiotemporal development and spatial synchrony within the present outbreak. Ecography, 2006, 29, 427-441.	4.5	197
41	Surveying mountain pine beetle damage of forests: A review of remote sensing opportunities. Forest Ecology and Management, 2006, 221, 27-41.	3.2	325
42	An approach for the analysis of vegetation spectra using non-linear mixed modeling of truncated power spectra. Annals of Forest Science, 2004, 61, 515-523.	2.0	29
43	Bark beetle (Coleoptera: Scolytidae) diversity in spaced and unmanaged mature lodgepole pine (Pinaceae) in southeastern British Columbia. Forest Ecology and Management, 2004, 200, 23-38.	3.2	24
44	Herbivory modifies conifer phenology: induced amelioration by a specialist folivore. Oecologia, 2003, 136, 88-95.	2.0	20
45	Mountain Pine Beetle Red-Attack Forest Damage Classification Using Stratified Landsat TM Data in British Columbia, Canada. Photogrammetric Engineering and Remote Sensing, 2003, 69, 283-288.	0.6	95
46	Development of an Index of Balsam Fir Vigor by Foliar Spectral Reflectance. Remote Sensing of Environment, 1999, 69, 241-252.	11.0	53
47	PHYSIOLOGICAL ADAPTATION TO TEMPORAL VARIATION IN CONIFER FOLIAGE BY A CATERPILLAR. Canadian Entomologist, 1999, 131, 659-669.	0.8	37
48	Interactions between body size and mating history influence the reproductive success of males of a tortricid moth, Zeiraphera canadensis. Canadian Journal of Zoology, 1994, 72, 2124-2132.	1.0	22
49	Intratree Variation in Foliage Development Influences the Foraging Strategy of a Caterpillar. Ecology, 1994, 75, 1978-1990.	3.2	27
50	Interactions between size and temperature influence fecundity and longevity of a tortricid moth, Zeiraphera canadensis. Oecologia, 1993, 93, 233-241.	2.0	61
51	Influence of feeding by Zeiraphera canadensis, the spruce bud moth, on stem-wood growth of young white spruce. Forest Ecology and Management, 1993, 58, 41-49.	3.2	24
52	Influence of Feeding by Zeiraphera canadensis (Lepidoptera: Tortricidae) on Growth of White Spruce: Larval Density-Damage and Damage-Shoot Production Relationships. Journal of Applied Ecology, 1993, 30, 629.	4.0	27
53	SUCROSE INGESTION BY <i>ZEIRAPHERA CANADENSIS</i> INCREASES LONGEVITY AND LIFETIME FECUNDITY BUT NOT OVIPOSITION RATE. Canadian Entomologist, 1992, 124, 335-340.	0.8	16