Jiyoung Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1016616/publications.pdf Version: 2024-02-01

LIVOLING CHANG

#	Article	IF	CITATIONS
1	Suspended graphene sensor with controllable width and electrical tunability via direct-write functional fibers. Journal of Manufacturing Processes, 2020, 58, 458-465.	5.9	7
2	Directâ€Printing of Functional Nanofibers on 3D Surfaces Using Selfâ€Aligning Nanojet in Nearâ€Field Electrospinning. Advanced Materials Technologies, 2020, 5, 2000232.	5.8	18
3	Nanoscale Fiber Deposition via Surface Charge Migration at Air-to-Polymer Liquid Interface in Near-Field Electrospinning. ACS Applied Polymer Materials, 2020, 2, 2761-2768.	4.4	8
4	Fiber Lithography: A Facile Lithography Platform Based on Electromagnetic Phase Modulation Using a Highly Birefringent Electrospun Fiber. ACS Applied Materials & Interfaces, 2020, 12, 20056-20066.	8.0	2
5	Synthesis of Micro-encapsulated Phase Change Materials Using Chain Transfer Agent via Emulsion Polymerization and Their Chemical, Optical, and Thermal Characterization. Jom, 2019, 71, 4562-4568.	1.9	3
6	3D Printed Injection Molding for Prototyping Batch Fabrication of Macroscale Graphene/Paraffin Spheres for Thermal Energy Management. Jom, 2019, 71, 4569-4577.	1.9	1
7	Droplet-jet mode near-field electrospinning for controlled helix patterns with sub-10 <i>µ</i> m coiling diameter. Journal of Micromechanics and Microengineering, 2019, 29, 045004.	2.6	8
8	Electrohydrodynamics: Electric-Field-Assisted Single-Step In Situ Fabrication and Focal Length Control of Polymeric Convex Lens on Flexible Substrate (Adv. Mater. Technol. 11/2018). Advanced Materials Technologies, 2018, 3, 1870042.	5.8	0
9	Experimental study on jet impact speed in near-field electrospinning for precise patterning of nanofiber. Journal of Manufacturing Processes, 2018, 36, 231-237.	5.9	25
10	Electricâ€Fieldâ€Assisted Singleâ€Step In Situ Fabrication and Focal Length Control of Polymeric Convex Lens on Flexible Substrate. Advanced Materials Technologies, 2018, 3, 1800108.	5.8	4
11	A Quantification of Jet Speed and Nanofiber Deposition Rate in Near-Field Electrospinning Through Novel Image Processing. Journal of Micro and Nano-Manufacturing, 2018, 6, .	0.7	7
12	Synthesis of Single‣ayer Graphene on Nickel Using a Droplet CVD Process. Advanced Materials Interfaces, 2017, 4, 1600783.	3.7	18
13	A facile dry-PMMA transfer process for electron-beam lithography on non-flat substrates. , 2017, , .		1
14	Suspended Graphene-Based Gas Sensor with 1-mW Energy Consumption. Micromachines, 2017, 8, 44.	2.9	15
15	Platinum Nanoparticle Loading of Boron Nitride Aerogel and Its Use as a Novel Material for Lowâ€Power Catalytic Gas Sensing. Advanced Functional Materials, 2016, 26, 433-439.	14.9	82
16	Gas Sensors: Platinum Nanoparticle Loading of Boron Nitride Aerogel and Its Use as a Novel Material for Lowâ€Power Catalytic Gas Sensing (Adv. Funct. Mater. 3/2016). Advanced Functional Materials, 2016, 26, 314-314.	14.9	3
17	Real-Time Observation of Water-Soluble Mineral Precipitation in Aqueous Solution by In Situ High-Resolution Electron Microscopy. ACS Nano, 2016, 10, 88-92.	14.6	38
18	Fast response integrated MEMS microheaters for ultra low power gas detection. Sensors and Actuators A: Physical, 2015, 223, 67-75.	4.1	103

JIYOUNG CHANG

#	Article	IF	CITATIONS
19	Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectronic Engineering, 2015, 132, 192-206.	2.4	191
20	Catalytic hydrogen sensing using microheated platinum nanoparticle-loaded graphene aerogel. Sensors and Actuators B: Chemical, 2015, 206, 399-406.	7.8	72
21	Facile electron-beam lithography technique for irregular and fragile substrates. Applied Physics Letters, 2014, 105, 173109.	3.3	6
22	Field Effect Transistors: Directâ€Write Complementary Graphene Field Effect Transistors and Junctions via Nearâ€Field Electrospinning (Small 10/2014). Small, 2014, 10, 2112-2112.	10.0	0
23	Directâ€Write Complementary Graphene Field Effect Transistors and Junctions via Nearâ€Field Electrospinning. Small, 2014, 10, 1920-1925.	10.0	23
24	High Quality Mn-Doped (Na,K)NbO ₃ Nanofibers for Flexible Piezoelectric Nanogenerators. ACS Applied Materials & Interfaces, 2014, 6, 10576-10582.	8.0	142
25	A flexible graphene FET gas sensor using polymer as gate dielectrics. , 2014, , .		6
26	Synthesis and Bidirectional Frequency Tuning of Cantilever-Shape Nano Resonators Using a Focused Ion Beam. ACS Applied Materials & Interfaces, 2013, 5, 9684-9690.	8.0	7
27	Direct-write n- and p-type graphene channel FETs. , 2013, , .		2
28	Piezoelectric nanofibers for energy scavenging applications. Nano Energy, 2012, 1, 356-371.	16.0	386
29	A Nearâ€Infrared Mechano Responsive Polymer System. Advanced Materials, 2012, 24, 2685-2690.	21.0	47
30	A biological breadboard platform for cell adhesion and detachment studies. Lab on A Chip, 2011, 11, 3555.	6.0	15
31	Large array electrospun PVDF nanogenerators on a flexible substrate. , 2011, , .		17
32	MEMS performance challenges: packaging and shock tests. , 2011, , .		0
33	MEMS-based dynamic cell-to-cell culture platforms using electrochemical surface modifications. Journal of Micromechanics and Microengineering, 2011, 21, 054028.	2.6	3
34	Pick, break, and placement of one-dimensional nanostructures for direct assembly and integration. Applied Physics Letters, 2010, 96, 153101.	3.3	8
35	MEMS packaging technologies & applications. , 2010, , .		4
36	MEMS-based biological platform for dynamic cell-to-cell interaction characterization. , 2010, , .		0

JIYOUNG CHANG

#	Article	IF	CITATIONS
37	Direct pick, break, and placement of nanostructures and their integration with MEMS. , 2009, , .		0
38	Electrostatically actuated carbon nanowire nanotweezers. Smart Materials and Structures, 2009, 18, 065017.	3.5	41
39	Bimorph nano actuators synthesized by focused ion beam chemical vapor deposition. Microelectronic Engineering, 2009, 86, 2364-2368.	2.4	7
40	Tunable Optical Enhancement from a Mems-Integrated TiO <inf>2</inf> Nanosword Plasmonic Antenna. , 2009, , .		1
41	Thermally Driven Bimorph Nano Actuators Fabricated using Focused Ion Beam Chemical Vapor Deposition. , 2007, , .		0
42	Electrostatically Actuated Nano Tweezers Fabricated on Micro Processed Electrodes. , 2006, , .		2
43	In-Situ Frequency Tuning of Electrostatically Actuated Vibrating Nano Structures Using Focused Ion Beam. , 2006, , .		1