Martin Dippe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1016515/publications.pdf

Version: 2024-02-01

1040056 1125743 15 448 9 13 citations h-index g-index papers 19 19 19 675 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Engineered Bacterial Flavinâ€Dependent Monooxygenases for the Regiospecific Hydroxylation of Polycyclic Phenols. ChemBioChem, 2022, 23, .	2.6	11
2	Coenzyme Aâ€Conjugated Cinnamic Acids – Enzymatic Synthesis of a CoAâ€Ester Library and Application in Biocatalytic Cascades to Vanillin Derivatives. Advanced Synthesis and Catalysis, 2019, 361, 5346-5350.	4.3	10
3	Rationally engineered variants of S-adenosylmethionine (SAM) synthase: reduced product inhibition and synthesis of artificial cofactor homologues. Chemical Communications, 2015, 51, 3637-3640.	4.1	40
4	Fe(III)–resorcylate as a spectrophotometric probe for phospholipid–cation interactions. Analytical Biochemistry, 2014, 445, 54-59.	2.4	2
5	Alkylating enzymes. Current Opinion in Chemical Biology, 2013, 17, 229-235.	6.1	53
6	New cardiolipin analogs synthesized by phospholipase D-catalyzed transphosphatidylation. Chemistry and Physics of Lipids, 2012, 165, 787-793.	3.2	11
7	Phospholipases A1 from Armillaria ostoyae Provide Insight into the Substrate Recognition of $\hat{l}\pm\hat{l}^2$ -Hydrolase Fold Enzymes. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 1435.	1.9	1
8	Phospholipid acylhydrolases trigger membrane degradation during fungal sporogenesis. Fungal Genetics and Biology, 2011, 48, 921-927.	2.1	5
9	A Spectrophotometric Microtiterplate Assay to Determine the Transphosphatidylation Potential of Phospholipase D. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 1005-1011.	1.9	5
10	Lanthanides as activators and fluorescence probes of phospholipase D. Chemistry and Physics of Lipids, 2010, 163, S34.	3.2	0
11	Substrate specificity in phospholipid transformations by plant phospholipase D isoenzymes. Phytochemistry, 2009, 70, 361-365.	2.9	16
12	Spectrophotometric determination of phosphatidic acid via iron(III) complexation for assaying phospholipase D activity. Analytical Biochemistry, 2009, 392, 169-173.	2.4	11
13	Phospholipase D-catalyzed synthesis of new phospholipids with polar head groups. Chemistry and Physics of Lipids, 2008, 152, 71-77.	3.2	28
14	Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switchâ€off in jasmonate signaling. New Phytologist, 2008, 177, 114-127.	7.3	236
15	Modulation of the transphosphatidylation potential of phospholipase D by protein and medium engineering. Chemistry and Physics of Lipids, 2007, 149, S76.	3.2	O