

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1016471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bulk metallic glass formation in the binary Cu–Zr system. Applied Physics Letters, 2004, 84, 4029-4031.	3.3	466
2	Matching Glass-Forming Ability with the Density of the Amorphous Phase. Science, 2008, 322, 1816-1819.	12.6	321
3	Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science, 2021, 373, 912-918.	12.6	304
4	An XPS investigation of the oxidation/corrosion of melt-spun Mg. Applied Surface Science, 2000, 158, 112-119.	6.1	268
5	The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses. Scripta Materialia, 2000, 42, 667-673.	5.2	260
6	Enhanced plastic strain in Zr-based bulk amorphous alloys. Physical Review B, 2001, 64, .	3.2	255
7	Shear band spacing under bending of Zr-based metallic glass plates. Acta Materialia, 2004, 52, 2429-2434.	7.9	236
8	Homogeneous Nucleation Catastrophe as a Kinetic Stability Limit for Superheated Crystal. Physical Review Letters, 1998, 80, 4474-4477.	7.8	229
9	Multiple maxima of GFA in three adjacent eutectics in Zr–Cu–Al alloy system – A metallographic way to pinpoint the best glass forming alloys. Acta Materialia, 2005, 53, 2969-2979.	7.9	225
10	Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Materialia, 2004, 52, 4121-4131.	7.9	222
11	Discovering inch-diameter metallic glasses in three-dimensional composition space. Applied Physics Letters, 2005, 87, 181915.	3.3	203
12	Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass. Nature, 2020, 578, 559-562.	27.8	203
13	Softening and dilatation in a single shear band. Acta Materialia, 2011, 59, 5146-5158.	7.9	195
14	Reduced glass transition temperature and glass forming ability of bulk glass forming alloys. Journal of Non-Crystalline Solids, 2000, 270, 103-114.	3.1	190
15	Extreme rejuvenation and softening in a bulk metallic glass. Nature Communications, 2018, 9, 560.	12.8	186
16	An instability index of shear band for plasticity in metallic glasses. Acta Materialia, 2009, 57, 1367-1372.	7.9	182
17	Strength, plasticity and brittleness of bulk metallic glasses under compression: statistical and geometric effects. Philosophical Magazine, 2008, 88, 71-89.	1.6	180
18	Atomic Scale Fluctuations Govern Brittle Fracture and Cavitation Behavior in Metallic Glasses. Physical Review Letters, 2011, 107, 215501.	7.8	177

#	Article	IF	CITATIONS
19	Deformation and Failure of Zr ₅₇ Ti ₅ Cu ₂₀ Ni ₈ Al ₁₀ Bulk Metallic Glass Under Quasi-static and Dynamic Compression. Journal of Materials Research, 2002, 17, 1441-1445.	2.6	172
20	Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La–Al–(Cu,Ni) pseudo ternary system. Acta Materialia, 2003, 51, 4551-4561.	7.9	169
21	Mechanical properties and optimal grain size distribution profile of gradient grained nickel. Acta Materialia, 2018, 153, 279-289.	7.9	161
22	Fe-based bulk metallic glass matrix composite with large plasticity. Scripta Materialia, 2010, 62, 329-332.	5.2	160
23	Understanding Long-Term Cycling Performance of Li _{1.2} Ni _{0.15} Mn _{0.55} Co _{0.1} O ₂ –Graphite Lithium-Ion Cells. Journal of the Electrochemical Society, 2013, 160, A3006-A3019.	2.9	159
24	Embrittlement of a bulk metallic glass due to low-temperature annealing. Scripta Materialia, 2002, 47, 107-111.	5.2	158
25	Effect of crystallinity on the impact toughness of a La-based bulk metallic glass. Acta Materialia, 2000, 48, 2603-2615.	7.9	156
26	Cold versus hot shear banding in bulk metallic glass. Physical Review B, 2009, 80, .	3.2	145
27	Densification and Strain Hardening of a Metallic Glass under Tension at Room Temperature. Physical Review Letters, 2013, 111, 135504.	7.8	131
28	Preparation and magnetic properties of (Zn–Sn) substituted barium hexaferrite nanoparticles for magnetic recording. Journal of Magnetism and Magnetic Materials, 1998, 187, 129-135.	2.3	123
29	Strain rate-dependent deformation in bulk metallic glasses. Intermetallics, 2002, 10, 1177-1182.	3.9	121
30	A new centimeter–diameter Cu-based bulk metallic glass. Scripta Materialia, 2006, 54, 1403-1408.	5.2	115
31	Shear band melting and serrated flow in metallic glasses. Applied Physics Letters, 2008, 93, .	3.3	109
32	Laser welding of Zr45Cu48Al7 bulk glassy alloy. Journal of Alloys and Compounds, 2006, 413, 118-121.	5.5	108
33	Three-Dimensional High-Entropy Alloy–Polymer Composite Nanolattices That Overcome the Strength–Recoverability Trade-off. Nano Letters, 2018, 18, 4247-4256.	9.1	108
34	Formation of Bulk Metallic Glasses and Their Composites. MRS Bulletin, 2007, 32, 624-628.	3.5	100
35	Glass forming ability of bulk glass forming alloys. Scripta Materialia, 1997, 36, 783-787.	5.2	99
36	Ductile Fe–Nb–B bulk metallic glass with ultrahigh strength. Applied Physics Letters, 2008, 92, .	3.3	99

#	Article	IF	CITATIONS
37	Microstructure and soft magnetic properties of nanocrystalline Fe–Si powders. Journal of Alloys and Compounds, 2001, 314, 262-267.	5.5	98
38	Functionally Graded Tiâ€6Alâ€4V Meshes with High Strength and Energy Absorption. Advanced Engineering Materials, 2016, 18, 34-38.	3.5	98
39	Passivity behavior of melt-spun Mg–Y Alloys. Electrochimica Acta, 2003, 48, 4197-4204.	5.2	93
40	A new Cu–Hf–Al ternary bulk metallic glass with high glass forming ability and ductility. Scripta Materialia, 2006, 54, 2165-2168.	5.2	92
41	On the exceptional damage-tolerance of gradient metallic materials. Materials Today, 2020, 32, 94-107.	14.2	89
42	Strategy for pinpointing the best glass-forming alloys. Applied Physics Letters, 2005, 86, 191906.	3.3	88
43	Doubling the Critical Size for Bulk Metallic Glass Formation in the Mg–Cu–Y Ternary System. Journal of Materials Research, 2005, 20, 2252-2255.	2.6	84
44	Statistical composition-structure-property correlation and glass-forming ability based on the full icosahedra in Cu–Zr metallic glasses. Applied Physics Letters, 2010, 96, .	3.3	83
45	Microstructure and mechanical properties of a partially crystallized La-based bulk metallic glass. Philosophical Magazine, 2003, 83, 1747-1760.	1.6	81
46	Monte Carlo simulation of a cluster system with strong interaction and random anisotropy. Physical Review B, 2001, 64, .	3.2	76
47	Glass forming ability and in-situ composite formation in Pd-based bulk metallic glasses. Acta Materialia, 2003, 51, 561-572.	7.9	76
48	Glass-forming tendency of bulk La–Al–Ni–Cu–(Co) metallic glass-forming liquids. Journal of Applied Physics, 2003, 93, 286-290.	2.5	76
49	Fe–Nd–B-based hard magnets from bulk amorphous precursor. Scripta Materialia, 2007, 56, 943-946.	5.2	75
50	Ductile fracture in notched bulk metallic glasses. Acta Materialia, 2017, 136, 126-133.	7.9	72
51	Glass formation in La-based La–Al–Ni–Cu–(Co) alloys by Bridgman solidification and their glass forming ability. Acta Materialia, 1999, 47, 2215-2224.	7.9	71
52	On the impact toughness of gradient-structured metals. Acta Materialia, 2020, 193, 125-137.	7.9	70
53	Origin of anomalous inverse notch effect in bulk metallic glasses. Journal of the Mechanics and Physics of Solids, 2015, 84, 85-94.	4.8	67
54	Characterization of mechanical properties of a Zr-based metallic glass by indentation techniques. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 384, 215-223.	5.6	63

#	ARTICLE	IF	CITATIONS
55	Microstructure control and ductility improvement of La–Al–(Cu,Ni) composites by Bridgman solidification. Acta Materialia, 2005, 53, 2607-2616.	7.9	59
56	Combining Ab Initio Computation with Experiments for Designing New Electrode Materials for Advanced Lithium Batteries: LiNi[sub 1/3]Fe[sub 1/6]Co[sub 1/6]Mn[sub 1/3]O[sub 2]. Journal of the Electrochemical Society, 2004, 151, A1134.	2.9	58
57	Ultrastrong nanotwinned pure nickel with extremely fine twin thickness. Science Advances, 2021, 7, .	10.3	58
58	Stress gradient enhanced plasticity in a monolithic bulk metallic glass. Intermetallics, 2008, 16, 1190-1198.	3.9	57
59	Determination of critical thickness for glass formation in new easy glass forming magnesium-base alloys by the wedge chill casting technique. Scripta Metallurgica Et Materialia, 1992, 26, 1371-1375.	1.0	55
60	Atomic structure of Zr–Cu glassy alloys and detection of deviations from ideal solution behavior with Al addition by x-ray diffraction using synchrotron light in transmission. Applied Physics Letters, 2009, 94, 191912.	3.3	55
61	Synthesis of La-based in-situ bulk metallic glass matrix composite. Intermetallics, 2002, 10, 1203-1205.	3.9	54
62	Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys—I. Microstructure selection. Acta Materialia, 2000, 48, 419-431.	7.9	53
63	Temperature, strain rate and reinforcement volume fraction dependence of plastic deformation in metallic glass matrix composites. Acta Materialia, 2007, 55, 3059-3071.	7.9	52
64	A three-parameter Weibull statistical analysis of the strength variation of bulk metallic glasses. Scripta Materialia, 2009, 61, 923-926.	5.2	51
65	The coercivity of rapidly quenched alloys. Journal Physics D: Applied Physics, 1999, 32, 713-716.	2.8	50
66	A structural, magnetic and microwave study on mechanically milled Fe-based alloy powders. Journal of Magnetism and Magnetic Materials, 2002, 247, 249-256.	2.3	50
67	Bulk metallic glasses: Eutectic coupled zone and amorphous formation. Jom, 2005, 57, 60-63.	1.9	50
68	Mechanical properties of metallic glass matrix composites: Effects of reinforcement character and connectivity. Scripta Materialia, 2007, 56, 617-620.	5.2	49
69	Cooling-rate dependence of the density ofPd40Ni10Cu30P20bulk metallic glass. Physical Review B, 2001, 64, .	3.2	47
70	Glass formation enhanced by oxygen in binary Zr–Cu system. Scripta Materialia, 2010, 62, 682-685.	5.2	47
71	Separation of glass transition and crystallization in metallic glasses by temperature-modulated differential scanning calorimetry. Philosophical Magazine Letters, 1998, 78, 213-220.	1.2	46
72	Corrosion behavior of melt-spun Mg65Ni20Nd15 and Mg65Cu25Y10 metallic glasses. Electrochimica Acta, 2003, 48, 2641-2650.	5.2	45

#	Article	IF	CITATIONS
73	Innovative approach to the design of low-cost Zr-based BMG composites with good glass formation. Scientific Reports, 2013, 3, 2097.	3.3	45
74	The effect of Y on glass forming ability. Scripta Materialia, 2005, 53, 183-187.	5.2	44
75	Size-dependent "malleable-to-brittle―transition in a bulk metallic glass. Applied Physics Letters, 2008, 93, .	3.3	44
76	Structure and magnetic characterization of amorphous and crystalline Nd–Fe–Al alloys. Journal of Alloys and Compounds, 1999, 290, 209-215.	5.5	43
77	Correlation between the corrosion behavior and corrosion films formed on the surfaces of Mg82â^xxNi18Ndx (x=0, 5, 15) amorphous alloys. Applied Surface Science, 2001, 173, 54-61.	6.1	43
78	Magnetic properties and magnetic entropy change of amorphous and crystalline GdNiAl ribbons. Applied Physics A: Materials Science and Processing, 2002, 75, 535-539.	2.3	42
79	On secondary dendrite arm coarsening in peritectic solidification. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 390, 52-62.	5.6	42
80	Glass forming abilities of binary Cu100â^'xZrx (34, 35.5, and 38.2â€,at. %) metallic glasses: A LAMMPS study. Journal of Applied Physics, 2009, 105, .	2.5	42
81	Critical cooling rates for glass formation in Zrî—,Alî—,Cuî—,Ni alloys. Journal of Non-Crystalline Solids, 1996, 208, 127-138.	3.1	39
82	High tensile strength reliability in a bulk metallic glass. Applied Physics Letters, 2008, 92, 041905.	3.3	38
83	The basic polyhedral clusters, the optimum glass formers, and the composition-structure-property (glass-forming ability) correlation in Cu–Zr metallic glasses. Journal of Applied Physics, 2010, 107, .	2.5	38
84	Crystallization kinetics of an Au-based metallic glass upon ultrafast heating and cooling. Scripta Materialia, 2017, 132, 58-62.	5.2	38
85	Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys—II. Microstructural length scales. Acta Materialia, 2000, 48, 1741-1751.	7.9	36
86	High-performance bulk Ti-Cu-Ni-Sn-Ta nanocomposites based on a dendrite-eutectic microstructure. Journal of Materials Research, 2004, 19, 2557-2566.	2.6	36
87	Influence of TM and RE elements on glass formation of the ternary Al–TM–RE systems. Journal of Non-Crystalline Solids, 2008, 354, 3473-3479.	3.1	35
88	A precipitate-free AlCoFeNi eutectic high-entropy alloy with strong strain hardening. Journal of Materials Science and Technology, 2021, 89, 88-96.	10.7	35
89	Effect of alloying oxygen on the microstructure and mechanical properties of Zr-based bulk metallic glass. Acta Materialia, 2021, 220, 117345.	7.9	33
90	Effects of high boron content on crystallization, forming ability and magnetic properties of amorphous Fe91â^'xZr5BxNb4 alloy. Journal of Non-Crystalline Solids, 2003, 332, 43-52.	3.1	32

#	Article	IF	CITATIONS
91	Quaternary Fe-based bulk metallic glasses with a diameter of 5mm. Intermetallics, 2007, 15, 1447-1452.	3.9	32
92	Glass formability and structural stability of Al-based alloy systems. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 273-276.	5.6	32
93	Gradient Confinement Induced Uniform Tensile Ductility in Metallic Glass. Scientific Reports, 2013, 3, 3319.	3.3	32
94	Glass formation and microstructure evolution in Al–Ni–RE (RE = La, Ce, Pr, Nd and misch me ternary systems. Philosophical Magazine, 2007, 87, 4211-4228.	tal) 1.6	31
95	Electrochemical Properties of Nanostructured Al[sub 1â^x]Cu[sub x] Alloys as Anode Materials for Rechargeable Lithium-Ion Batteries. Journal of the Electrochemical Society, 2008, 155, A615.	2.9	31
96	Low temperature characterization of nano-sized BaFe12â^'2xZnxSnxO19 particles. Journal of Magnetism and Magnetic Materials, 1999, 191, 277-281.	2.3	30
97	Study of frequency dependence modulus of bulk amorphous alloys around the glass transition by dynamic mechanical analysis. Intermetallics, 2002, 10, 1061-1064.	3.9	30
98	Breakdown of the Hall-Petch relationship in extremely fine nanograined body-centered cubic Mo alloys. Acta Materialia, 2021, 213, 116950.	7.9	30
99	Easy glass formation in Mg64Ni21Nd15 by Bridgman solidification. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 179-180, 628-631.	5.6	29
100	Effect of weak convection on lamellar spacing of eutectics. Acta Materialia, 1998, 46, 3203-3210.	7.9	29
101	Effect of boron addition to the hard magnetic bulk Nd60Fe30Al10 amorphous alloy. Journal of Magnetism and Magnetic Materials, 2000, 217, 65-73.	2.3	29
102	Bulk Glass Formation of 12 mm Rod in La–Cu–Ni–Al Alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 436-439.	5.6	29
103	The influence of Nb and Zr on glass-formation ability in the ternary Fe–Nb–B and Fe–Zr–B and quaternary Fe–(Nb,Zr)–B alloy systems. Journal of Materials Research, 2008, 23, 392-401.	2.6	29
104	Molecular dynamics studies of short to medium range order in Cu64Zr36 metallic glass. Journal of Alloys and Compounds, 2011, 509, 8319-8322.	5.5	29
105	Easy glass formation in magnesium-based Mg-Ni-Nd alloys. Journal of Materials Science, 1996, 31, 1857-1863.	3.7	28
106	A study of the glass forming ability in ZrNiAl alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 441, 106-111.	5.6	28
107	Thermoelasticity of Fe ₇ C ₃ under inner core conditions. Journal of Geophysical Research: Solid Earth, 2016, 121, 5828-5837.	3.4	28
108	Thermodynamics of La based La–Al–Cu–Ni–Co alloys studied by temperature modulated DSC. Intermetallics, 2000, 8, 477-480.	3.9	27

#	Article	IF	CITATIONS
109	A magnetic and M¶ssbauer study of melt-spun Nd60Fe30Al10. Journal of Magnetism and Magnetic Materials, 2001, 224, 143-152.	2.3	27
110	Improving glass-forming ability of Mgâ^'Cuâ^'Y via substitutional alloying: Effects of Ag versus Ni. Journal of Materials Research, 2006, 21, 2204-2214.	2.6	27
111	A new composition zone of bulk metallic glass formation in the Cu–Zr–Ti ternary system and its correlation with the eutectic reaction. Journal of Non-Crystalline Solids, 2008, 354, 3659-3665.	3.1	27
112	Co-existence of homogeneous flow and localized plastic deformation in tension of amorphous Ni–P films on ductile substrate. Acta Materialia, 2016, 106, 182-192.	7.9	27
113	Phase stability of B2-ordered ZrTiHfCuNiFe high entropy alloy. Intermetallics, 2019, 111, 106515.	3.9	27
114	The effects of W content on solid-solution strengthening and the critical Hall-Petch grain size in Ni-W alloy. Surface and Coatings Technology, 2019, 357, 23-27.	4.8	27
115	Magnetic relaxation in Zn–Sn-doped barium ferrite nanoparticles for recording. Journal of Magnetism and Magnetic Materials, 2000, 213, 413-417.	2.3	26
116	Glass Forming Ability of La-rich La-Al-Cu Ternary Alloys. Materials Transactions, 2001, 42, 551-555.	1.2	26
117	Invariant critical stress for shear banding in a bulk metallic glass. Applied Physics Letters, 2008, 93, 231912.	3.3	26
118	Characterizations of Al–Y thin film composite anode materials for lithium-ion batteries. Electrochemistry Communications, 2009, 11, 1179-1182.	4.7	26
119	The multi-axial deformation behavior of bulk metallic glasses at high homologous temperatures. International Journal of Solids and Structures, 2010, 47, 678-690.	2.7	26
120	Homogeneous flow of bulk metallic glass composites with a high volume fraction of reinforcement. Journal of Materials Research, 2007, 22, 1564-1573.	2.6	25
121	Bulk metallic glass formation near intermetallic composition through liquid quenching. Applied Physics Letters, 2009, 95, 011906.	3.3	25
122	Glass formation adjacent to the intermetallic compounds in Cu-Zr binary system. Journal of Materials Science and Technology, 2018, 34, 605-612.	10.7	25
123	Structure, properties and response to heat treatment of melt-spun Al-Y and Al-La alloys. Journal of Materials Science, 1994, 29, 3913-3918.	3.7	24
124	Unusual magnetization anisotropy in amorphous Nd–Fe–Al ribbons. Journal of Magnetism and Magnetic Materials, 1998, 187, L273-L277.	2.3	23
125	Effect of local pressure on the crystallization product of amorphous alloys induced by mechanical milling. Journal of Non-Crystalline Solids, 2000, 277, 91-97.	3.1	23
126	Effect of rare earth and silicon additions on structure and properties of melt spun Mg–9Al–1Zn alloy. Materials Science and Technology, 1996, 12, 651-661.	1.6	22

#	Article	IF	CITATIONS
127	Glass transition and crystallization of Mg–Ni–Nd metallic glasses studied by temperature-modulated DSC. Intermetallics, 2004, 12, 869-874.	3.9	22
128	Compositional dependence of Young's moduli for amorphous Cu–Zr films measured using combinatorial deposition on microscale cantilever arrays. Scripta Materialia, 2011, 64, 41-44.	5.2	22
129	Oxygen impurity improving corrosion resistance of a Zr-based bulk metallic glass in 3.5Âwt% NaCl solution. Corrosion Science, 2021, 192, 109867.	6.6	22
130	New amorphous alloys with high strength and good bend ductility in the Mgî—,Niî—,Nd system. Journal of Materials Processing Technology, 1995, 48, 489-493.	6.3	21
131	Study on the Behavior of Additives in Steel Hot-Dip Galvanizing by DFT Calculations. Chemistry of Materials, 2000, 12, 1879-1883.	6.7	21
132	Rapid solidification behavior of Zn-rich Zn–Ag peritectic alloys. Acta Materialia, 2002, 50, 183-193.	7.9	21
133	Glass-forming ability of Pr–(Cu,Ni)–Al alloys in eutectic system. Journal of Materials Research, 2003, 18, 664-671.	2.6	21
134	Crystallization-induced stress in thin phase change films of different thicknesses. Applied Physics Letters, 2008, 93, 221907.	3.3	21
135	A Relationship between Glass-Forming Ability and Reduced Glass Transition Temperature near Eutectic Composition. Materials Transactions, 2001, 42, 556-561.	1.2	20
136	Mechanism of mechanical crystallization of amorphous Fe–Mo–Si–B alloy. Journal of Applied Physics, 2001, 90, 1650-1654.	2.5	20
137	Frequency-dependent complex modulus at the glass transition inPd40Ni10Cu30P20bulk amorphous alloys. Physical Review B, 2003, 67, .	3.2	20
138	Cooperative shear and catastrophic fracture of bulk metallic glasses from a shear-band instability perspective. Journal of Materials Research, 2009, 24, 3620-3627.	2.6	20
139	The Effect of Heat Treatment on the Corrosion Behavior of Amorphous Mg–Ni–Nd Alloys. Journal of Materials Research, 1999, 14, 1638-1644.	2.6	19
140	Anomalous magnetic viscosity in bulk-amorphous materials. Journal of Magnetism and Magnetic Materials, 1999, 206, 127-134.	2.3	19
141	Effect of Yttrium addition on magnetocaloric properties of Gd-Co-Al-Ho high entropy metallic glasses. Journal of Non-Crystalline Solids, 2020, 549, 120354.	3.1	19
142	Observation of lamellar eutectic-like structure in a Zn-rich Zn-3.37wt%Cu peritectic alloy processed by bridgman solidification. Scripta Materialia, 1998, 39, 7-11.	5.2	18
143	The effect of thermal annealing on reactive radio-frequency magnetron-sputtered carbon nitride films. Journal Physics D: Applied Physics, 1999, 32, 195-199.	2.8	18
144	Model of ferromagnetic clusters in amorphous rare earth and transition metal alloys. Journal of Applied Physics, 2001, 89, 8046-8053.	2.5	18

#	Article	IF	CITATIONS
145	Boron content dependence of crystallization, glass forming ability and magnetic properties in amorphous Fe-Zr-B-Nb alloys. Journal of Alloys and Compounds, 2004, 370, 1-7.	5.5	18
146	The correlation between glass formation and hardness of the amorphous phase. Scripta Materialia, 2011, 65, 747-750.	5.2	18
147	Mechanical properties and optimum layer thickness in an amorphous Ni–P/coarse-grained Ni bi-layered structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 760, 458-468.	5.6	18
148	The effect of oxygen on phase formation in an industrial Zr based bulk metallic glass. Intermetallics, 2021, 129, 107055.	3.9	18
149	Characterization of corrosion products formed on a rapidly solidified Mg based EA55RS alloy. Journal of Materials Science, 1996, 31, 4017-4023.	3.7	17
150	The alloying effect of Ni on the corrosion behavior of melt-spun Mg–Ni ribbons. Electrochimica Acta, 2001, 46, 2649-2657.	5.2	17
151	Correlation between Glass Formation and Type of Eutectic Coupled Zone in Eutectic Alloys. Materials Transactions, 2003, 44, 2007-2010.	1.2	17
152	Optimal glass-forming composition and its correlation with eutectic reaction in the Ti–Ni–Al ternary system. Journal of Alloys and Compounds, 2009, 467, 261-267.	5.5	17
153	Calculation of crystallization start line for Zr48Cu45Al7 bulk metallic glass at a high heating and cooling rate. Journal of Alloys and Compounds, 2009, 484, 698-701.	5.5	17
154	Micro-back-extrusion of a bulk metallic glass. Scripta Materialia, 2010, 63, 469-472.	5.2	17
155	A grain-size-dependent structure evolution in gradient-structured (GS) Ni under tension. Nano Materials Science, 2020, 2, 39-49.	8.8	17
156	A superferromagnetic approach for rapidly quenched Y60Fe30Al10alloys. Journal of Physics Condensed Matter, 2000, 12, 4253-4262.	1.8	16
157	Glass forming ability of La–Al–Ni–Cu and Pd–Si–Cu bulk metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 679-682.	5.6	16
158	Magnetic hardening in amorphous alloy Sm60Fe30Al10. Scripta Materialia, 2001, 44, 829-834.	5.2	16
159	Cellular growth of Zn-rich Zn–Ag alloys processed by rapid solidification. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 373, 139-145.	5.6	16
160	Effect of residual shear bands on serrated flow in a metallic glass. Materials Letters, 2005, 59, 3325-3329.	2.6	16
161	The fundamental structural factor in determining the glass-forming ability and mechanical behavior in the Cu–Zr metallic glasses. Materials Chemistry and Physics, 2011, 127, 292-295.	4.0	16
162	The glass transition of Pd40Ni10Cu30P20 studied by temperature-modulated calorimetry. Journal of Non-Crystalline Solids, 1999, 260, 228-234.	3.1	15

#	Article	IF	CITATIONS
163	Relationship among Chemical Element Properties, Bulk Additive Properties, and Crystal Structures of Binary Zinc Compounds. Chemistry of Materials, 1999, 11, 3166-3170.	6.7	15
164	Study of temperature profile and specific heat capacity in temperature modulated DSC with a low sample heat diffusivity. Thermochimica Acta, 2000, 360, 131-140.	2.7	15
165	Effect of amorphous layer thickness on the tensile behavior of bulk-sized amorphous Ni-P/crystalline Ni laminates. Materials Letters, 2018, 218, 150-153.	2.6	15
166	Effect of load and lubrication on low load hardness of a rapidly solidified light alloy. Materials Letters, 1996, 28, 33-36.	2.6	14
167	Frequency dependence of heat capacity of thePd40Ni10Cu30P20amorphous alloy by temperature-modulated calorimetry. Physical Review B, 2000, 62, 3169-3175.	3.2	14
168	Glass formation in the ternary Zr–Zr2Cu–Zr2Ni system. Journal of Non-Crystalline Solids, 2006, 352, 832-836.	3.1	14
169	Composition effects on glass-forming ability and its indicator Î ³ . Intermetallics, 2008, 16, 410-417.	3.9	14
170	Density change upon crystallization of amorphous Zr–Cu–Al thin films. Acta Materialia, 2010, 58, 3633-3641.	7.9	14
171	Effect of heat treatment on the corrosion behaviour of amorphous Mg-18 at% Ni alloy. Journal of Alloys and Compounds, 1998, 279, 252-258.	5.5	13
172	Melting and solidification of Pb nanoparticles embedded in an Al matrix as studied by temperature-modulated differential scanning calorimetry. Philosophical Magazine Letters, 1998, 78, 37-44.	1.2	13
173	Magnetoresistivity and metamagnetism of the Nd33Fe50Al17 alloy. Applied Physics Letters, 1999, 75, 1763-1765.	3.3	13
174	Unidirectional solidification of a Zn-rich Zn–2.17 wt%Cu hypo-peritectic alloy. Science and Technology of Advanced Materials, 2001, 2, 127-130.	6.1	13
175	The influence of heat treatment on the corrosion behaviour of amorphous melt-spun binary Mg–18 at.% Ni and Mg–21 at.% Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 510-514.	5.6	13
176	A model of atom dense packing for metallic glasses with high-solute concentration. Applied Physics Letters, 2009, 94, .	3.3	13
177	Easy glass formation in La55Ni2OAl25 by Bridgman solidification. Materials Letters, 1998, 34, 318-321.	2.6	12
178	Effects of rare earth additions on structures and properties of rapidly solidified copper alloys. Materials Science and Technology, 1999, 15, 169-179.	1.6	12
179	Crystallization by post-treatment of reactive r.fmagnetron-sputtered carbon nitride films. Diamond and Related Materials, 1999, 8, 1906-1912.	3.9	12
180	Correlations between the glass transition, crystallization, apparent activation energy and glass forming ability in Fe based amorphous alloys. Journal of Physics Condensed Matter, 2003, 15, 7617-7623.	1.8	12

#	Article	IF	CITATIONS
181	Effect of frame stiffness on the deformation behavior of bulk metallic glass. Journal of Materials Research, 2010, 25, 1958-1962.	2.6	12
182	Multiple maxima in glass-forming ability in Al–Zr–Ni system. Journal of Alloys and Compounds, 2010, 489, 183-187.	5.5	12
183	Effect of temperature on the yield strength of a binary CuZr metallic glass: Stress-induced glass transition. Intermetallics, 2012, 26, 162-165.	3.9	12
184	Magnetic properties, microstructure and corrosion behavior of Nd10Y1Fe85â^'xNb3.5Ti0.5Bx (x=14–22) and Nd10Y1Fe69Nb3.5M0.5B16 (M=Ti, Zr, Cr, Mo) bulk nanocrystalline magnets. Journal of Alloys and Compounds, 2013, 555, 16-21.	5.5	12
185	Phase stability and compressive properties of low-density (Zr50Ti35Nb15)100-xAlx high entropy alloys. Intermetallics, 2022, 148, 107622.	3.9	12
186	Thermal stability of the αZn–Mg2Zn11 and ÂZn–ÂAl eutectics obtained by Bridgman growth. Journal of Materials Science, 1998, 33, 1159-1164.	3.7	11
187	A comparative study of melt-spun ribbons of Nd12Fe82B6and Nd15Fe77B8. Journal Physics D: Applied Physics, 1998, 31, 2745-2750.	2.8	11
188	Computer aided design of NiMH electrodes. Journal of Materials Chemistry, 1999, 9, 837-843.	6.7	11
189	Phase-Change Materials in Optically Triggered Microactuators. Journal of Microelectromechanical Systems, 2008, 17, 1094-1103.	2.5	11
190	The critical cooling rate and microstructure evolution of Zr41.2Ti13.8Cu12.5Ni10Be22.5 composites by Bridgman solidification. Intermetallics, 2010, 18, 115-118.	3.9	11
191	Glass formation, microstructure evolution and mechanical properties of Zr41.2Ti13.8Cu12.5Ni10Be22.5 and its surrounding alloys. Acta Materialia, 2014, 73, 194-204.	7.9	11
192	Voronoi volume recovery during plastic deformation in deep-notched metallic glasses. Journal of Alloys and Compounds, 2019, 776, 460-468.	5.5	11
193	Critical cooling rates of glass formation in Mg-based Mg-Ni-Nd alloys. Journal of Materials Science Letters, 1995, 14, 988-990.	0.5	10
194	Dissolution of Mg-based Mg–Ni–Nd amorphous alloys in 3% NaCl solution. Materials Letters, 1998, 36, 214-217.	2.6	10
195	Epitaxy barium ferrite thin films on LiTaO3 substrate. Journal of Applied Physics, 1999, 86, 2191-2195.	2.5	10
196	Heterogeneous nucleation catastrophe on dislocations in superheated crystals. Journal of Physics Condensed Matter, 2000, 12, 9123-9128.	1.8	10
197	Hard magnetic properties and magnetocaloric effect in amorphous NdFeAl ribbons. Journal of Alloys and Compounds, 2001, 316, 260-263.	5.5	10
198	Laser resolidification of a Zn–3.37 wt.% Cu peritectic alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 318, 235-243.	5.6	10

#	Article	IF	CITATIONS
199	Observation of lamellar structure in a Zn-rich Zn-6.3at.% Ag hyper-peritectic alloy processed by rapid solidification. Scripta Materialia, 2001, 44, 631-636.	5.2	10
200	Direct observation of a concealed glass transition in a Mg–Ni–Nd metallic glass. Applied Physics Letters, 2003, 82, 862-864.	3.3	10
201	Contributions to the homogeneous plastic flow of in situ metallic glass matrix composites. Applied Physics Letters, 2005, 87, 241904.	3.3	10
202	Glass forming ability criteria for La–Al–(Cu,Ni) alloys. Journal of Non-Crystalline Solids, 2006, 352, 5482-5486.	3.1	10
203	Conversion of isothermal and isochronal crystallization in a supercooled liquid through additivity rule. Intermetallics, 2017, 86, 73-79.	3.9	10
204	Critical cooling rates for glass formation in Mg65Ni20Nd15 alloy. Journal of Non-Crystalline Solids, 1994, 175, 224-227.	3.1	9
205	Structures, properties and responses to heat treatment of Cu–Y alloys prepared by mechanical alloying. Journal of Alloys and Compounds, 1998, 278, 201-208.	5.5	9
206	Post-annealing effect in reactive r.fmagnetron-sputtered carbon nitride thin films. Surface and Interface Analysis, 1999, 28, 245-249.	1.8	9
207	Numerical modeling and analysis of temperature modulated differential scanning calorimetry: On the separability of reversing heat flow from non-reversing heat flow. Thermochimica Acta, 2000, 343, 81-88.	2.7	9
208	EFFECT OF Y ADDITION ON THE CORROSION BEHAVIOR OF MELT-SPUN AMORPHOUS Mg–Cu RIBBONS. Surface Review and Letters, 2001, 08, 575-580.	1.1	9
209	Local atomic structures of amorphous Pd ₈₀ Si ₂₀ alloys and their configuration heredity in the rapid solidification. Philosophical Magazine, 2018, 98, 2861-2877.	1.6	9
210	Structure and mechanical properties of rapidly solidified magnesium based Mg–Al–Zn–RE alloys consolidated by extrusion. Materials Science and Technology, 1996, 12, 981-1070.	1.6	9
211	Phase constitution in melt-spun A1–10 wt% Y. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1994, 70, 1129-1137.	0.6	8
212	Structure and mechanical properties of rapidly solidified magnesium based Mg-Al-Zn-RE alloys consolidated by extrusion. Materials Science and Technology, 1996, 12, 981-982.	1.6	8
213	Unidirectional solidification of Al–Cu eutectic with the accelerated crucible rotation technique. Journal of Crystal Growth, 1998, 194, 398-405.	1.5	8
214	A magnetic study of melt-spun ribbons. Journal of Physics Condensed Matter, 1998, 10, 9081-9092.	1.8	8
215	Study of glass transition of metallic glasses by temperature-modulated differential scanning calorimetry (MDSC). Thermochimica Acta, 2000, 357-358, 65-69.	2.7	8
216	Some elements in specific heat capacity measurement and numerical simulation of temperature modulated DSC (TMDSC) with R/C network. Thermochimica Acta, 2000, 360, 157-168.	2.7	8

#	Article	IF	CITATIONS
217	Synthesis of in situ bulk glass matrix composite in by Bridgman method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 407-410.	5.6	8
218	Effect of liquidus temperature depression on glass forming ability criteria for La–Al–(Cu,Ni) alloys. Intermetallics, 2007, 15, 744-748.	3.9	8
219	Evaluation of composition region for peritectic coupled growth. Journal of Crystal Growth, 2000, 219, 300-306.	1.5	7
220	Amorphous magnetic RE-Fe-Al alloys. IEEE Transactions on Magnetics, 2001, 37, 2500-2502.	2.1	7
221	Synthèse de composites à matrice de verre métallique massif renforcée par une phase cristalline dans des alliages de lanthane et de palladium. Annales De Chimie: Science Des Materiaux, 2002, 27, 119-124.	0.4	7
222	Correlations between apparent activation energy and thermostability and glass forming ability for Fe based metallic glasses. Journal of Non-Crystalline Solids, 2008, 354, 970-974.	3.1	7
223	Bulk metallic glass formation, composite, and magnetic propertiesof Fe-B-Nd based alloys. Journal of Materials Research, 2009, 24, 357-371.	2.6	7
224	Influence of oxygen on the glass formation of Mo–O binary alloys. Journal of Non-Crystalline Solids, 2018, 500, 210-216.	3.1	7
225	High-throughput screening of critical size of grain growth in gradient structured nickel. Journal of Materials Science and Technology, 2021, 82, 33-39.	10.7	7
226	Dual-gradient structure leads to optimized combination of high fracture resistance and strength-ductility synergy with minimized final catastrophic failure. Journal of Materials Research and Technology, 2021, 15, 901-910.	5.8	7
227	Observation of continuous and step-like thermomagnetization in Nd-Fe-Al amorphous alloys. IEEE Transactions on Magnetics, 1999, 35, 3460-3462.	2.1	6
228	Dependence of pulsed-laser deposition parameters on the microstructure and magnetic property of Nd–Fe–B thin films grown at high substrate temperature. Journal of Applied Physics, 2002, 91, 4666-4671.	2.5	6
229	Co dependence of Curie temperature in amorphous Fe–Co–Zr–B–Nb alloys with high glass-forming ability. Journal of Physics Condensed Matter, 2004, 16, 6325-6334.	1.8	6
230	Synthesis of amorphous alloys and amorphous–crystalline composites in ternary Ni–Nb–Zr system by ion beam mixing. Materials Chemistry and Physics, 2013, 141, 960-966.	4.0	6
231	Prediction of new additives for galvanizing process by the properties of their constituent chemical elements. Journal of Materials Research, 1999, 14, 1791-1795.	2.6	5
232	Structure and Magnetic Properties of Y60Fe30Al10 Melt-Spun Ribbons. Physica Status Solidi A, 1999, 172, 461-468.	1.7	5
233	Class Formation and Glass Forming Ability of La Based Alloys. Materials Transactions, JIM, 2000, 41, 1397-1405.	0.9	5
234	Cluster-glass behaviour of the substituted molybdenum ferrite: a magnetic and Mössbauer study. Journal of Physics Condensed Matter, 2000, 12, 9963-9972	1.8	5

#	Article	IF	CITATIONS
235	Effect of Ta particles on the fracture behavior of notched bulk metallic glass composites. Intermetallics, 2019, 106, 1-6.	3.9	5
236	Strain-hardening under uniaxial tension in a rejuvenated bulk metallic glass. Scripta Materialia, 2022, 212, 114572.	5.2	5
237	Structures, properties and responses to heat treatment of melt-spun Cuî—,Y alloys. Journal of Alloys and Compounds, 1997, 259, 276-282.	5.5	4
238	A model for magnetic ordering in inhomogeneous amorphous RE–Fe–Al alloys. Journal of Magnetism and Magnetic Materials, 2001, 226-230, 1504-1506.	2.3	4
239	The eutectic point in Pr-rich Pr–Cu–Al ternary alloys. Journal of Alloys and Compounds, 2002, 333, 113-117.	5.5	4
240	Effect of micro-structural changes on mechanical properties of La66Al14(Cu, Ni)20 amorphous and crystalline alloys. Intermetallics, 2004, 12, 1279-1283.	3.9	4
241	Synthesis of a La-based bulk metallic glass matrix composite. Philosophical Magazine Letters, 2004, 84, 53-61.	1.2	4
242	The effect of various transition metals on glass formation in ternary La-TM-Al (TM = Co, Ni, Cu) alloys. Journal of Materials Research, 2011, 26, 992-996.	2.6	4
243	Crystallization behavior of an Au based metallic glass at high temperature. Journal of Alloys and Compounds, 2020, 835, 155245.	5.5	4
244	Brillouin light-scattering from polymer gels. Journal De Physique II, 1993, 3, 1241-1245.	0.9	4
245	The aging characteristics of rapidly solidified high lithium Alî—,Liî—,Mg alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 179-180, 681-687.	5.6	3
246	DSC analysis of the effect of processing technique on the dissolution/precipitation reactions in a hypereutectic Alâ ^{~'} Si alloy. Journal of Thermal Analysis, 1995, 44, 1321-1331.	0.6	3
247	Observation of glass transition upon cooling in Pd40Ni10Cu30P20 alloy by DSC. Materials Letters, 1999, 40, 294-297.	2.6	3
248	Glass formation in La-based La55Al25(NiCu)20 alloys by Bridgman solidification. Journal of Non-Crystalline Solids, 1999, 250-252, 601-604.	3.1	3
249	Glass transition of rare-earth based metallic glasses: temperature modulated differential scanning calorimetry. Journal of Non-Crystalline Solids, 1999, 250-252, 689-693.	3.1	3
250	Strong composition-dependence on glass-forming ability in Ni–(Ti,Zr)–Si pseudo-ternary alloys. Journal of Alloys and Compounds, 2006, 422, 86-91.	5.5	3
251	Significant structural relaxation in a Mo O binary amorphous alloy. Journal of Non-Crystalline Solids, 2019, 514, 10-14.	3.1	3
252	Structure and mechanical properties of rapidly solidified magnesiulm based Mg–Al–Zn–RE alloys consolidated by extrusion. Materials Science and Technology, 1996, 12, 981-989.	1.6	3

#	Article	IF	CITATIONS
253	The effect of solidification conditions on the structure and properties of the Al-6wt% Li-15wt%Cu eutectic alloy containing T2 phase. Journal of Materials Science, 1990, 25, 835-842.	3.7	2
254	Structure and properties of rapidly solidified Mg-based Mgî—,Pr alloys. Journal of Materials Processing Technology, 1995, 48, 483-487.	6.3	2
255	Temperature modulated differential scanning calorimetry: on system linearity and the effect of kinetic events on the observed sample specific heat. Thermochimica Acta, 2000, 359, 43-54.	2.7	2
256	Discontinuous precipitation initiated at interphase boundaries in a Zn-rich Zn-6.3 at.% Ag alloy. Philosophical Magazine Letters, 2000, 80, 467-475.	1.2	2
257	Structure and Magnetic Properties of Chill-cast and Melt-spun Nd _x (Fe _{3} Al) _{100-x} and Nd _{33} (Fe _y Al) _{67} Alloys. Materials Transactions, 2001, 42, 664-669.	1.2	2
258	Bulk Hard Magnetic Alloys in Nd-Fe-B System Prepared by Casting and Melt Spinning. Materials Transactions, 2001, 42, 674-677.	1.2	2
259	MAGNETOELASTIC NANOCRYSTALLINE Co–Ni ALLOYS. International Journal of Nanoscience, 2004, 03, 615-623.	0.7	2
260	Pinpoint the Best Glass Forming Alloy by Microstructure Study in Cu ₈ Zr ₃ -Cu ₁₀ Zr ₇ Eutectic System of Cu-Zr Binary System. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 287-290.	0.1	2
261	Parameters governing glass formation: A view from phase selection. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 63-65.	5.6	2
262	Publisher's Note: Electrochemical Properties of Nanostructured Al[sub 1â^'x]Cu[sub x] Alloys as Anode Materials for Rechargeable Lithium-Ion Batteries [J. Electrochem. Soc., 155, A615 (2008)]. Journal of the Electrochemical Society, 2008, 155, S10.	2.9	2
263	Correlation between supercooled liquid region and crystallization behavior with alloy composition of La-Al-Cu metallic glasses. Science China: Physics, Mechanics and Astronomy, 2011, 54, 1608-1611.	5.1	2
264	Brillouin light-scattering from poly(acrylic acid) hydrogels. Journal De Physique II, 1994, 4, 715-722.	0.9	2
265	Evidence for growth twinning within eutectic T ₂ phase in chill-cast αAl-T, eutectic alloy. Philosophical Magazine Letters, 1991, 63, 197-203.	1.2	1
266	Effect of alloying addition of Pr on the dissolution rate of melt-spun Mg in 3% NaCl solution. Journal of Materials Science, 1998, 33, 1075-1081.	3.7	1
267	A structural, magnetic and Mössbauer investigation on melt-spun Nd0.33(Fe0.75Al0.25)0.67ribbons. Journal of Physics Condensed Matter, 1999, 11, 10557-10566.	1.8	1
268	Glass Formation and Glass Forming Ability of Alloys Near Eutectic Composition. Materials Research Society Symposia Proceedings, 2000, 644, 341.	0.1	1
269	Effect of long-term room-temperature storage on the structure and properties of glassy melt-spun Mg-Al-Ca alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 2155-2162.	2.2	1
270	Correlation of chemical element properties and additive behaviors of ternary zinc compounds. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2002, 26, 55-62.	1.6	1

#	Article	IF	CITATIONS
271	Initiation of discontinuous precipitation at interphase boundaries in a two-phase Zn–6.3 at.% Ag alloy. Philosophical Magazine, 2004, 84, 1773-1787.	1.6	1
272	Composition optimization of the NiZrYAl glass forming alloys. Journal of Alloys and Compounds, 2006, 424, 307-310.	5.5	1
273	Role of structure and rare earth (RE) elements on the corrosion of magnesium (Mg) alloys. , 2011, , 166-206.		1
274	A novel nacre-like metal/metal structure by lithography and electrodeposition. Journal of Alloys and Compounds, 2021, 865, 158853.	5.5	1
275	Rejuvenation by triaxial compression in a brittle La-based bulk metallic glass. Materials Letters, 2022, 320, 132336.	2.6	1
276	Crystallization parameters of two Mgî—,Niî—,Nd alloy glasses with large supercooled liquid ranges. Materials Letters, 1994, 21, 175-178.	2.6	0
277	Significant Undercooled Liquid Region of Over 200K in Rare Earth Based Metallic Glasses. Materials Research Society Symposia Proceedings, 1998, 554, 205.	0.1	0
278	Mechanical Properties of La-based Bulk Amorphous Alloys and Composites. Materials Research Society Symposia Proceedings, 2002, 754, 1.	0.1	0
279	Geometry-sensitive plasticity of a monolithic bulk metallic glass. Materials Research Society Symposia Proceedings, 2007, 1048, 6.	0.1	0

Glass Forming Ability and Magnetic Properties of (Fe<sub>68</sub>B<sub>25</sub>Nd<sub>7</sub>)<sub>96</sub>Nb**<**sub> Bulk Metallic Glass. Key Engineering Materials, 0, 426-427, 629-632. 280