
An Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10164080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal–Organic Frameworks (MOFs) and MOF-Derived Materials for Energy Storage and Conversion. Electrochemical Energy Reviews, 2019, 2, 29-104.	25.5	274
2	Double-atom catalysts: transition metal dimer-anchored C ₂ N monolayers as N ₂ fixation electrocatalysts. Journal of Materials Chemistry A, 2018, 6, 18599-18604.	10.3	224
3	Transition metal anchored C ₂ N monolayers as efficient bifunctional electrocatalysts for hydrogen and oxygen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 11446-11452.	10.3	223
4	Machine learning: Accelerating materials development for energy storage and conversion. InformaÄnÃ- Materiály, 2020, 2, 553-576.	17.3	212
5	A Machine Learning Model on Simple Features for CO ₂ Reduction Electrocatalysts. Journal of Physical Chemistry C, 2020, 124, 22471-22478.	3.1	125
6	Boosting bifunctional electrocatalytic activity in S and N co-doped carbon nanosheets for high-efficiency Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 4386-4395.	10.3	101
7	An effective method to screen sodium-based layered materials for sodium ion batteries. Npj Computational Materials, 2018, 4, .	8.7	77
8	Rational design of C ₂ N-based type-II heterojunctions for overall photocatalytic water splitting. Nanoscale Advances, 2019, 1, 154-161.	4.6	70
9	Targeted design of advanced electrocatalysts by machine learning. Chinese Journal of Catalysis, 2022, 43, 11-32.	14.0	63
10	Algorithm screening to accelerate discovery of 2D metal-free electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 19290-19296.	10.3	48
11	Highâ€throughput computational screening of layered and twoâ€dimensional materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1385.	14.6	43
12	Computational Screening of Layered Materials for Multivalent Ion Batteries. ACS Omega, 2019, 4, 7822-7828.	3.5	33
13	Band engineering of two-dimensional Ruddlesden–Popper perovskites for solar utilization: the relationship between chemical components and electronic properties. Journal of Materials Chemistry A, 2019, 7, 11530-11536.	10.3	17
14	Vision for energy material design: A roadmap for integrated data-driven modeling. Journal of Energy Chemistry, 2022, 71, 56-62.	12.9	12
15	Unraveling the Anchoring Effect of MXene-Supported Single Atoms as Cathodes for Aluminum–Sulfur Batteries. , 2022, 4, 1436-1445.		11
16	Accelerated Mining of 2D Van der Waals Heterojunctions by Integrating Supervised and Unsupervised Learning. Chemistry of Materials, 2022, 34, 5571-5583.	6.7	7