Le Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10161123/publications.pdf

Version: 2024-02-01

		1039406	1125271
14	158	9	13
papers	citations	h-index	g-index
14	14	14	189
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Quantitative Surface-Enhanced Raman Spectroscopy for Field Detections Based on Structurally Homogeneous Silver-Coated Silicon Nanocone Arrays. ACS Omega, 2021, 6, 18928-18938.	1.6	22
2	Large Area α-Cu ₂ S Particle-Stacked Nanorod Arrays by Laser Ablation in Liquid and Their Strong Structurally Enhanced and Stable Visible Photoelectric Performances. ACS Applied Materials & 2018, 10, 19027-19036.	4.0	20
3	Ultrathin and Isotropic Metal Sulfide Wrapping on Plasmonic Metal Nanoparticles for Surface Enhanced Ram Scattering-Based Detection of Trace Heavy-Metal Ions. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28145-28153.	4.0	19
4	Decoration of Au Nanoparticles on MoS ₂ Nanospheres: From Janus to Core/Shell Structure. Journal of Physical Chemistry C, 2018, 122, 8628-8636.	1.5	18
5	Monodispersed Snowman-Like Ag-MoS ₂ Janus Nanoparticles as Chemically Self-Propelled Nanomotors. ACS Applied Nano Materials, 2020, 3, 624-632.	2.4	16
6	Ultrathin Hexagonal PbO Nanosheets Induced by Laser Ablation in Water for Chemically Trapping Surface-Enhanced Raman Spectroscopy Chips and Detection of Trace Gaseous H2S. ACS Applied Materials & De	4.0	14
7	Mars–van-Krevelen mechanism-based blackening of nano-sized white semiconducting oxides for synergetic solar photo-thermocatalytic degradation of dye pollutants. Nanoscale, 2020, 12, 4030-4039.	2.8	12
8	Ultrathin Oxide Layer-Wrapped Noble Metal Nanoparticles via Colloidal Electrostatic Self-Assembly for Efficient and Reusable Surface Enhanced Raman Scattering Substrates. Langmuir, 2017, 33, 12934-12942.	1.6	10
9	Conductometric Response-Triggered Surface-Enhanced Raman Spectroscopy for Accurate Gas Recognition and Monitoring Based on Oxide-wrapped Metal Nanoparticles. ACS Sensors, 2020, 5, 1641-1649.	4.0	9
10	Optimal Excitation Wavelength for Surface-Enhanced Raman Spectroscopy: The Role of Chemical Interface Damping. Journal of Physical Chemistry Letters, 2021, 12, 11014-11021.	2.1	6
11	Microporousâ€Ceriaâ€Wrapped Gold Nanoparticles for Conductometric and SERS Dual Monitoring of Hazardous Gases at Room Temperature. Advanced Materials Interfaces, 2022, 9, .	1.9	5
12	Surface Roughening of Pt-Polystyrene Spherical Janus Micromotors for Enhanced Motion Speed. Micromachines, 2022, 13, 555.	1.4	4
13	Abnormally Weak Surface-Enhanced Raman Scattering Activity of Tip-Rich Au Nanostars: The Role of Interfacial Defects. Journal of Physical Chemistry Letters, 2022, 13, 2428-2433.	2.1	2
14	High-Density-Nanotips-Composed 3D Hierarchical Au/CuS Hybrids for Sensitive, Signal-Reproducible, and Substrate-Recyclable SERS Detection. Nanomaterials, 2022, 12, 2359.	1.9	1