
Federico Dicenta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10158916/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Chilling and heat requirements of almond cultivars for flowering. Environmental and Experimental Botany, 2003, 50, 79-85.	2.0	163
2	Bitterness in Almonds. Plant Physiology, 2008, 146, 1040-1052.	2.3	113
3	Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. Tree Genetics and Genomes, 2012, 8, 379-389.	0.6	102
4	Elucidation of the Amygdalin Pathway Reveals the Metabolic Basis of Bitter and Sweet Almonds (<i>Prunus dulcis</i>). Plant Physiology, 2018, 178, 1096-1111.	2.3	64
5	Cyanogenic Glucosides and Derivatives in Almond and Sweet Cherry Flower Buds from Dormancy to Flowering. Frontiers in Plant Science, 2017, 8, 800.	1.7	52
6	Molecular markers for kernel bitterness in almond. Tree Genetics and Genomes, 2010, 6, 237-245.	0.6	49
7	Recent advancements to study flowering time in almond and other Prunus species. Frontiers in Plant Science, 2014, 5, 334.	1.7	48
8	Inheritance and relationships of important agronomic traits in almond. Euphytica, 2007, 155, 381-391.	0.6	47
9	DNA Methylation Analysis of Dormancy Release in Almond (Prunus dulcis) Flower Buds Using Epi-Genotyping by Sequencing. International Journal of Molecular Sciences, 2018, 19, 3542.	1.8	46
10	Breaking seed dormancy in almond (Prunus dulcis (Mill.) D.A. Webb). Scientia Horticulturae, 2004, 99, 363-370.	1.7	45
11	Prunasin Hydrolases during Fruit Development in Sweet and Bitter Almonds Â. Plant Physiology, 2012, 158, 1916-1932.	2.3	40
12	Identification of S-alleles in almond using multiplex PCR. Euphytica, 2004, 138, 263-269.	0.6	39
13	β-Glucosidase activity in almond seeds. Plant Physiology and Biochemistry, 2018, 126, 163-172.	2.8	35
14	The delay of flowering time in almond: a review of the combined effect of adaptation, mutation and breeding. Euphytica, 2017, 213, 1.	0.6	34
15	Opportunities of marker-assisted selection for Plum pox virus resistance in apricot breeding programs. Tree Genetics and Genomes, 2014, 10, 513-525.	0.6	30
16	Identification of early and late flowering time candidate genes in endodormant and ecodormant almond flower buds. Tree Physiology, 2021, 41, 589-605.	1.4	29
17	Almond. , 2007, , 229-242.		27
18	Tissue and cellular localization of individual βâ€glycosidases using a substrateâ€specific sugar reducing assay. Plant Journal, 2009, 60, 894-906.	2.8	25

FEDERICO DICENTA

#	Article	IF	CITATIONS
19	Gene Expression Analysis of Plum pox virus (Sharka) Susceptibility/Resistance in Apricot (Prunus) Tj ETQq1 1 0.7	784314 rgB ⁻ 1.1	T /Qverlock
20	Monitoring Dormancy Transition in Almond [Prunus Dulcis (Miller) Webb] during Cold and Warm Mediterranean Seasons through the Analysis of a DAM (Dormancy-Associated MADS-Box) Gene. Horticulturae, 2018, 4, 41.	1.2	25
21	Comparative genomics analysis in <scp>P</scp> runoideae to identify biologically relevant polymorphisms. Plant Biotechnology Journal, 2013, 11, 883-893.	4.1	20
22	Pedigree analysis of 220 almond genotypes reveals two world mainstream breeding lines based on only three different cultivars. Horticulture Research, 2021, 8, 11.	2.9	20
23	Anomalous embryo sac development and fruit abortion caused by inbreeding depression in almond (Prunus dulcis). Scientia Horticulturae, 2012, 133, 23-30.	1.7	19
24	Ascorbic acid and prunasin, two candidate biomarkers for endodormancy release in almond flower buds identified by a nontargeted metabolomic study. Horticulture Research, 2020, 7, 203.	2.9	19
25	Sensitivity of peach cultivars against a Dideron isolate of Plum pox virus. Scientia Horticulturae, 2012, 144, 81-86.	1.7	17
26	Cross-incompatibility in the cultivated almond (Prunus dulcis): Updating, revision and correction. Scientia Horticulturae, 2019, 245, 218-223.	1.7	16
27	Suitability of four different methods to identify self-compatible seedlings in an almond breeding programme. Journal of Horticultural Science and Biotechnology, 2004, 79, 747-753.	0.9	15
28	Molecular and phenotypic characterization of the S-locus and determination of flowering time in new â€~Marcona' and â€~Desmayo Largueta'-type almond (Prunus dulcis) selections. Euphytica, 2011, 7 67-78.	l77p.6	15
29	â€~Mirlo Blanco', â€~Mirlo Anaranjado', and â€~Mirlo Rojo': Three New Very Early-season Apricots fo Fresh Market. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 1893-1894.	r the 0.5	15
30	Use of recessive homozygous genotypes to assess genetic control of kernel bitterness in almond. Euphytica, 2006, 153, 221-225.	0.6	14
31	Monitoring the transition from endodormancy to ecodormancy in almond through the analysis and expression of a specific class III peroxidase gene. Tree Genetics and Genomes, 2019, 15, 1.	0.6	14
32	Transcriptomic analysis of pollen-pistil interactions in almond (Prunus dulcis) identifies candidate genes for components of gametophytic self-incompatibility. Tree Genetics and Genomes, 2019, 15, 1.	0.6	13
33	Temporal Response to Drought Stress in Several Prunus Rootstocks and Wild Species. Agronomy, 2020, 10, 1383.	1.3	13
34	Influence of the pollinizer in the amygdalin content of almonds. Scientia Horticulturae, 2012, 139, 62-65.	1.7	11
35	Pollinizer influence on almond seed dormancy. Scientia Horticulturae, 2005, 104, 91-99.	1.7	10
36	Disruption of endosperm development: an inbreeding effect in almond (Prunus dulcis). Sexual Plant Reproduction, 2010, 23, 135-140.	2.2	10

Federico Dicenta

#	Article	IF	CITATIONS
37	Synteny-Based Development of CAPS Markers Linked to the Sweet kernel LOCUS, Controlling Amygdalin Accumulation in Almond (Prunus dulcis (Mill.) D.A.Webb). Genes, 2018, 9, 385.	1.0	9
38	Advancing Endodormancy Release in Temperate Fruit Trees Using Agrochemical Treatments. Frontiers in Plant Science, 2021, 12, 812621.	1.7	9
39	iTRAQ-based quantitative proteomic analysis of pistils and anthers from self-incompatible and self-compatible almonds with the S f haplotype. Molecular Breeding, 2015, 35, 1.	1.0	8
40	Selfâ€pollination does not affect fruit set or fruit characteristics in almond (<i>Prunus dulcis</i>). Plant Breeding, 2011, 130, 367-371.	1.0	7
41	Changes in the antioxidative metabolism induced by Apple chlorotic leaf spot virus infection in peach [Prunus persica (L.) Batsch]. Environmental and Experimental Botany, 2011, 70, 277-282.	2.0	7
42	Evaluation of apricot (Prunus armeniaca L.) resistance to Apple chlorotic leaf spot virus in controlled greenhouse conditions. European Journal of Plant Pathology, 2012, 133, 857-863.	0.8	7
43	Penta and Makako: Two Extra-late Flowering Self-compatible Almond Cultivars from CEBAS-CSIC. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 1700-1702.	0.5	7
44	Behaviour of Apricot Cultivars Against <i>Hop Stunt Viroid</i> . Journal of Phytopathology, 2016, 164, 193-197.	0.5	5
45	Gene Expression Analysis of Induced Plum pox virus (Sharka) Resistance in Peach (Prunus persica) by Almond (P. dulcis) Grafting. International Journal of Molecular Sciences, 2021, 22, 3585.	1.8	5
46	â€~Estrella' and â€~Sublime' Apricot Cultivars. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 469-470.	0.5	5
47	â€~Cebasred' and â€~Primorosa' Apricots: Two New Self-compatible, Plum pox virus (Sharka)–resistant, Very Early Ripening Cultivars for the Fresh Market. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 1919-1921.	and 0.5	4
48	Genomic Designing for New Climate-Resilient Almond Varieties. , 2020, , 1-21.		3
49	Identification of quantitative trait loci (QTLs) linked to Apple chlorotic leaf spot virus (ACLSV) resistance in apricot. Euphytica, 2019, 215, 1.	0.6	2
50	Analysis of the Modulation of Dormancy Release in Almond (Prunus dulcis) in Relation to the Flowering and Ripening Dates and Production under Controlled Temperature Conditions. Agronomy, 2020, 10, 277.	1.3	1
51	Quantification of cyanogenic compounds, amygdalin, prunasin, and hydrocyanic acid in almonds (Prunus dulcis Miller) for industrial uses. Revista Colombiana De Ciencias HortÃcolas, 2021, 15, .	0.2	0