Julia Ermakova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10158767/publications.pdf

Version: 2024-02-01

933447 1125743 234 14 10 13 citations h-index g-index papers 14 14 14 174 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Up-conversion quantum yields of SrF ₂ :Yb ³⁺ ,Er ³⁺ sub-micron particles prepared by precipitation from aqueous solution. Journal of Materials Chemistry C, 2018, 6, 598-604.	5.5	61
2	White light luminophores based on Yb3+/Er3+/Tm3+-coactivated strontium fluoride powders. Materials Chemistry and Physics, 2014, 148, 201-207.	4.0	29
3	New Sr1â^'zRx(NH4)zF2+xâ^'z (RÂ=ÂYb, Er) solid solution as precursor for high efficiency up-conversion luminophor and optical ceramics on the base of strontium fluoride. Materials Chemistry and Physics, 2016, 172, 150-157.	4.0	26
4	Efficient visible range SrF2:Yb:Er- and SrF2:Yb:Tm-based up-conversion luminophores. Journal of Fluorine Chemistry, 2017, 194, 16-22.	1.7	19
5	Upconversion luminescence of Ca _{1â^*(i>x< i>x< i>x< i>x< i>x< i>x< i>x< i>x<}	1.4	18
6	Upconversion microparticles as time-resolved luminescent probes for multiphoton microscopy: desired signal extraction from the streaking effect. Journal of Biomedical Optics, 2016, 21, 096002.	2.6	15
7	Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization. Laser Physics, 2016, 26, 084001.	1.2	15
8	Preparation of nanodispersed fluorite-type $Sr1\hat{a}^2xRxF2+x$ (R=Er, Yb, Ho) phases from citrate solutions. Journal of Fluorine Chemistry, 2017, 194, 8-15.	1.7	14
9	Effect of Up-Converting Luminescent Nanoparticles with Increased Quantum Yield Incorporated into the Fluoropolymer Matrix on Solanum lycopersicum Growth. Agronomy, 2022, 12, 108.	3.0	14
10	Cultivation of Solanum lycopersicum under Glass Coated with Nanosized Upconversion Luminophore. Applied Sciences (Switzerland), 2021, 11, 10726.	2.5	10
11	Synthesis of SrF ₂ :Yb:Er ceramic precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF and NH ₄ F. Dalton Transactions, 2022, 51, 5448-5456.	3.3	7
12	Algorithm for calculation of up-conversion luminophores mixtures chromaticity coordinates. Journal of Fluorine Chemistry, 2020, 237, 109607.	1.7	3
13	Synthesis of CaF2–YF3 nanopowders by coprecipitation from aqueos solutions. Nanosystems: Physics, Chemistry, Mathematics, 2017, , 462-470.	0.4	3
14	Preparation and characterization of strontium fluoride powders activated by neodymium fluoride. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, , 578-586.	0.2	0