Andreas Schildan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10157877/publications.pdf

Version: 2024-02-01

516710 526287 29 874 16 27 citations g-index h-index papers 35 35 35 1053 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tau deposition patterns are associated with functional connectivity in primary tauopathies. Nature Communications, 2022, 13, 1362.	12.8	34
2	Cortical [<scp>¹⁸F</scp>] <scp>PI</scp> â€2620 Binding Differentiates Corticobasal Syndrome Subtypes. Movement Disorders, 2021, 36, 2104-2115.	3.9	46
3	Binding characteristics of [¹⁸ F]PI-2620 distinguish the clinically predicted tau isoform in different tauopathies by PET. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2957-2972.	4.3	30
4	Feasibility of short imaging protocols for [18F]PI-2620 tau-PET in progressive supranuclear palsy. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3872-3885.	6.4	22
5	Feasibility of short imaging protocols for [¹⁸ F]Plâ€2620 tauâ€PET in progressive supranuclear palsy. Alzheimer's and Dementia, 2021, 17, .	0.8	O
6	Tau spreads across connected brain regions in progressive supranuclear palsy and corticobasal syndrome. Alzheimer's and Dementia, 2021, 17, .	0.8	1
7	Assessment of ¹⁸ F-PI-2620 as a Biomarker in Progressive Supranuclear Palsy. JAMA Neurology, 2020, 77, 1408.	9.0	145
8	Early-phase [18F]PI-2620 tau-PET imaging as a surrogate marker of neuronal injury. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2911-2922.	6.4	36
9	ICâ€Pâ€161: 18Fâ€PI2620 TAUâ€PET IN PROGRESSIVE SUPRANUCLEAR PALSY: A MULTIâ€CENTER EVALUATIO and Dementia, 2019, 15, P128.	N. Alzheime	er's
10	Evaluation of early-phase [18 F]-florbetaben PET acquisition in clinical routine cases. NeuroImage: Clinical, 2017, 14, 77-86.	2.7	91
11	Additive value of amyloid-PET in routine cases of clinical dementia work-up after FDG-PET. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 2239-2248.	6.4	15
12	Radiation dosimetry of the $\hat{1}\pm4\hat{1}^22$ nicotinic receptor ligand (+)-[18F]flubatine, comparing preclinical PET/MRI and PET/CT to first-in-human PET/CT results. EJNMMI Physics, 2016, 3, 25.	2.7	17
13	Internal Dose Assessment of (–)- ¹⁸ F-Flubatine, Comparing Animal Model Datasets of Mice and Piglets with First-in-Human Results. Journal of Nuclear Medicine, 2014, 55, 1885-1892.	5.0	17
14	Evaluation of metabolism, plasma protein binding and other biological parameters after administration of (â^²)-[18F]Flubatine in humans. Nuclear Medicine and Biology, 2014, 41, 489-494.	0.6	18
15	Fully automated radiosynthesis of both enantiomers of [18F]Flubatine under GMP conditions for human application. Applied Radiation and Isotopes, 2013, 80, 7-11.	1.5	20
16	Influence of additives to the formulation of n.c.a. [11C]PiB on sterile filter performance. Applied Radiation and Isotopes, 2013, 82, 289-292.	1.5	2
17	Decreased cerebral α4β2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer's disease assessed with positron emission tomography. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 515-525.	6.4	109

#	Article	IF	CITATIONS
19	18F- and 11C-labelling of quantum dots with n.c.a. [18F]fluoroethyltosylate and [11C]methyliodide: a feasibility study. Journal of Radioanalytical and Nuclear Chemistry, 2010, 283, 487-491.	1.5	10
20	Metabolite analysis of [18F]Florbetaben (BAY 94-9172) in human subjects: a substudy within a proof of mechanism clinical trial. Journal of Radioanalytical and Nuclear Chemistry, 2010, 284, 557-562.	1.5	28
21	Lower cortical Alpha4Beta2 nicotinic acetylcholine receptor binding and its relationship to cognitive dysfunction in early stage multiple sclerosis: A 2-[18F]F-A-85380 PET study. NeuroImage, 2010, 52, S111.	4.2	0
22	In vivo measurement of nicotinic acetylcholine receptors with [¹⁸ F]norchloroâ€fluoroâ€homoepibatidine. Synapse, 2008, 62, 205-218.	1.2	47
23	Norchloro-fluoro-homoepibatidine (NCFHEB) â€" A promising radioligand for neuroimaging nicotinic acetylcholine receptors with PET. European Neuropsychopharmacology, 2008, 18, 222-229.	0.7	25
24	Measurement of the $\hat{l}\pm4\hat{l}^22^*$ nicotinic acetylcholine receptor ligand 2-[18F]Fluoro-A-85380 and its metabolites in human blood during PET investigation: a methodological study. Nuclear Medicine and Biology, 2007, 34, 331-342.	0.6	22
25	Synthesis procedure for routine production of 2-[18F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[18F]F-A-85380). Applied Radiation and Isotopes, 2007, 65, 1244-1248.	1.5	16
26	Binding properties of the cerebral $\hat{l}\pm4\hat{l}^22$ nicotinic acetylcholine receptor ligand 2-[18F]fluoro-A-85380 to plasma proteins. Nuclear Medicine and Biology, 2006, 33, 899-906.	0.6	12
27	Autoradiography of 2-[18F]F-A-85380 on nicotinic acetylcholine receptors in the porcine brain in vitro. Synapse, 2006, 59, 201-210.	1.2	11
28	Nicotinic acetylcholine receptors in patients with Parkinson's disease and Alzheimer's disease: Specific binding of 2-[18F]F-A-85380 in the cerebral white matter as demonstrated by PET and comparison with diffusion tensor MRI (DTI). Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S584-S584.	4.3	0
29	Synthesis and evaluation of tritium labelled 10-methylgalanthamine iodide: a novel compound to examine the mechanism of interaction of galanthamine derivatives with the nicotinic acetylcholine receptors. Journal of Labelled Compounds and Radiopharmaceuticals, 2003, 46, 1117-1125.	1.0	3