
Woongsik Jang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1015720/publications.pdf Version: 2024-02-01

WOONCSIK LANC

#	Article	IF	CITATIONS
1	Gamma–ray irradiation of lead iodide precursor for enhanced perovskite crystalline properties. Applied Surface Science, 2022, 571, 151263.	6.1	3
2	Mesoporous Trap of Molecular Sieves via Water-Selective Capture for Stable Perovskite Quantum Dots. ACS Sustainable Chemistry and Engineering, 2022, 10, 1115-1124.	6.7	5
3	Recent progress in organic solar cells based on non-fullerene acceptors: materials to devices. Journal of Materials Chemistry A, 2022, 10, 3255-3295.	10.3	105
4	Physical engineering of antiâ€solvents in perovskite precipitation for enhanced photosensitive affinity. International Journal of Energy Research, 2022, 46, 9748-9760.	4.5	3
5	Suppressed oxidation in organic photovoltaics via hydrogen-bonded polyurethane acrylate resin encapsulation. Journal of Power Sources, 2022, 528, 231206.	7.8	2
6	Tris(4-(1-phenyl-1 <i>H</i> -benzo[<i>d</i>]imidazole)phenyl)phosphine oxide for enhanced mobility and restricted traps in photovoltaic interlayers. Journal of Materials Chemistry C, 2021, 9, 3642-3651.	5.5	2
7	Strong dark current suppression in flexible organic photodetectors by carbon nanotube transparent electrodes. Nano Today, 2021, 37, 101081.	11.9	50
8	Morphology Inversion of a Nonâ€Fullerene Acceptor Via Adhesion Controlled Decalâ€Coating for Efficient Conversion and Detection in Organic Electronics. Advanced Functional Materials, 2021, 31, 2103705.	14.9	15
9	Formulation of conductive nanocomposites by incorporating silverâ€doped carbon quantum dots for efficient charge extraction. International Journal of Energy Research, 2021, 45, 21324-21339.	4.5	5
10	Versatile Pendant Polymer for Selective Charge Carrier Transport via Controlling the Supramolecular Selfâ€Assembly. ChemSusChem, 2021, 14, 5167-5178.	6.8	6
11	One-step formation of core/shell structure based on hydrophobic silane ligands for enhanced luminescent perovskite quantum dots. Journal of Alloys and Compounds, 2021, 886, 161347.	5.5	12
12	Versatile Pendant Polymer for Selective Charge Carrier Transport via Controlling the Supramolecular Selfâ€Assembly. ChemSusChem, 2021, 14, 5078.	6.8	0
13	Chelating Agent Mediated Sol–Gel Synthesis for Efficient Hole Extracted Perovskite Photovoltaics. Journal of Physical Chemistry C, 2020, 124, 25184-25195.	3.1	5
14	Superior Noise Suppression, Response Time, and Device Stability of Nonâ€Fullerene System over Fullerene Counterpart in Organic Photodiode. Advanced Functional Materials, 2020, 30, 2001402.	14.9	42
15	A gold nanodot array imprinting process based on solid-state dewetting for efficient oxide-free photovoltaic devices. Applied Physics Letters, 2020, 117, .	3.3	2
16	Acidity Suppression of Hole Transport Layer via Solution Reaction of Neutral PEDOT:PSS for Stable Perovskite Photovoltaics. Polymers, 2020, 12, 129.	4.5	21
17	Selective UV Absorbance of Copper Chalcogenide Nanoparticles for Enhanced Illumination Durability in Perovskite Photovoltaics. ACS Sustainable Chemistry and Engineering, 2020, 8, 7617-7627.	6.7	6
18	Selective Soxhlets extraction to enhance solubility of newly-synthesized poly(indoloindole-selenophene vinylene selenophene) donor for photovoltaic applications. Nano Convergence, 2020, 7, 9.	12.1	9

#	Article	IF	CITATIONS
19	Selective Doping of Conjugated Block Copolymer for Organic Thermoelectric Applications. Nanoscale and Microscale Thermophysical Engineering, 2019, 23, 222-234.	2.6	3
20	Controlled pH of PEDOT:PSS for Reproducible Efficiency in Inverted Perovskite Solar Cells: Independent of Active Area and Humidity. ACS Sustainable Chemistry and Engineering, 2019, 7, 8245-8254.	6.7	23
21	Tailoring solubility of methylammonium lead halide with non-stoichiometry molar ratio in perovskite solar cells: Morphological and electrical relationships for high current generation. Solar Energy Materials and Solar Cells, 2019, 192, 24-35.	6.2	13
22	The Investigation of the Seebeck Effect of the Poly(3,4-Ethylenedioxythiophene)-Tosylate with the Various Concentrations of an Oxidant. Polymers, 2019, 11, 21.	4.5	10
23	Alignment of Cascaded Band-Gap via PCBM/ZnO Hybrid Interlayers for Efficient Perovskite Photovoltaic Cells. Macromolecular Research, 2018, 26, 472-476.	2.4	16
24	Work function optimization of vacuum free top-electrode by PEDOT:PSS/PEI interaction for efficient semi-transparent perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 176, 435-440.	6.2	36
25	Facile NiOx Sol-Gel Synthesis Depending on Chain Length of Various Solvents without Catalyst for Efficient Hole Charge Transfer in Perovskite Solar Cells. Polymers, 2018, 10, 1227.	4.5	10
26	Long-Term Stable Transferred Organic Photoactive Layer-Based Photodiode with Controlled Wetting through Interface Stabilization. ACS Applied Materials & Interfaces, 2018, 10, 38603-38609.	8.0	6
27	Vacuum-process-based dry transfer of active layer with solvent additive for efficient organic photovoltaic devices. Journal of Materials Chemistry C, 2017, 5, 1106-1112.	5.5	9
28	Dry-Stamping-Transferred PC71BM Charge Transport Layer via an Interface-Controlled Polyurethane Acrylate Mold Film for Efficient Planar-Type Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 15623-15630.	8.0	15
29	Morphology fixing agent for [6,6]-phenyl C ₆₁ -butyric acid methyl ester (PC ₆₀ BM) in planar-type perovskite solar cells for enhanced stability. RSC Advances, 2016, 6, 51513-51519.	3.6	10
30	Counterbalancing of morphology and conductivity of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate based flexible devices. Nanoscale, 2016, 8, 19557-19563.	5.6	13
31	Morphological engineering via processing additive in thin film bulk-heterojunction photovoltaic cells: A systematic understanding of crystal size and charge transport. Current Applied Physics, 2016, 16, 1424-1430.	2.4	8
32	Nanopatterned bulk-heterojunction photovoltaic cells using polyurethane acrylate (PUA) film replica of colloidal crystal arrays via stamping transfer process. Macromolecular Research, 2016, 24, 483-487.	2.4	1