Iftekhar Karimi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1015674/iftekhar-karimi-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 294
papers
 7,144
citations
 48
h-index
 68
g-index

 311
ext. papers
 8,315
ext. citations
 3.8
avg, IF
 6.65
L-index

#	Paper	IF	Citations
294	Estimating NOx emissions of useful two-fuel blends from literature data. <i>Fuel</i> , 2022 , 316, 123213	7.1	O
293	Effect of Cyclopentane and Graphite on the Kinetics of CO2/C3H8 Formation for Hydrate-Based Desalination. <i>Lecture Notes in Civil Engineering</i> , 2022 , 400-408	0.3	
292	Study on Boil-off Gas (BOG) Minimization and Recovery Strategies from Actual Baseload LNG Export Terminal: Towards Sustainable LNG Chains. <i>Energies</i> , 2021 , 14, 3478	3.1	5
291	Organic Rankine cycle integrated with hydrate-based desalination for a sustainable energy water nexus system. <i>Applied Energy</i> , 2021 , 291, 116839	10.7	6
290	Prospective of Upfront Nitrogen (N2) Removal in LNG Plants: Technical Communication. <i>Energies</i> , 2021 , 14, 3616	3.1	1
289	Sustainability Assessment of Thermocatalytic Conversion of CO2 to Transportation Fuels, Methanol, and 1-Propanol. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 10591-10600	8.3	8
288	State transients in storage systems for energy fluids. <i>Computers and Chemical Engineering</i> , 2021 , 144, 107128	4	3
287	Optimal Procurement of Liquefied Natural Gas Cargos from Long-Term Contracts and Spot Market through Mathematical Programming. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 3658-3	8669	2
286	Revised learning based evolutionary assistive paradigm for surrogate selection (LEAPS2v2). <i>Computers and Chemical Engineering</i> , 2021 , 152, 107385	4	4
285	Teaching-learning self-study approach for optimal retrofitting of dual mixed refrigerant LNG process: Energy and exergy perspective. <i>Applied Energy</i> , 2021 , 298, 117187	10.7	4
284	Reducing Power Use in the Cold Section of LNG Plants. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 13056-13067	8.3	O
283	Techno-enviro-economic analyses of hydrogen supply chains with an ASEAN case study. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 32914-32928	6.7	0
282	Effects of cooling and heating sources properties and working fluid selection on cryogenic organic Rankine cycle for LNG cold energy utilization. <i>Energy Conversion and Management</i> , 2021 , 247, 114706	10.6	5
281	A critical review on measures to suppress flow boiling instabilities in microchannels. <i>Heat and Mass Transfer</i> , 2021 , 57, 889-910	2.2	7
280	Simulation and health monitoring of a pressure regulating station. <i>Computers and Chemical Engineering</i> , 2020 , 139, 106824	4	4
279	Shuffled Complex Evolution-Based Performance Enhancement and Analysis of Cascade Liquefaction Process for Large-Scale LNG Production. <i>Energies</i> , 2020 , 13, 2511	3.1	6
278	Impact of mixed refrigerant selection on energy and exergy performance of natural gas liquefaction processes. <i>Energy</i> , 2020 , 199, 117378	7.9	20

(2019-2020)

Single-Solution-Based Vortex Search Strategy for Optimal Design of Offshore and Onshore Natural Gas Liquefaction Processes. <i>Energies</i> , 2020 , 13, 1732	3.1	11
Dual-effect single-mixed refrigeration cycle: An innovative alternative process for energy-efficient and cost-effective natural gas liquefaction. <i>Applied Energy</i> , 2020 , 268, 115022	10.7	28
A Parallel World Framework for scenario analysis in knowledge graphs. <i>Data-Centric Engineering</i> , 2020 , 1,	2.6	11
Wall superheat at the incipient nucleate boiling condition for natural and forced convection: A CFD approach. <i>Computers and Chemical Engineering</i> , 2020 , 134, 106718	4	4
Exergoeconomic analysis and optimization of a Gas Turbine-Modular Helium Reactor with new organic Rankine cycle for efficient design and operation. <i>Energy Conversion and Management</i> , 2020 , 204, 112311	10.6	15
Simulation-based approach for integrating work within heat exchange networks for sub-ambient processes. <i>Energy Conversion and Management</i> , 2020 , 203, 112276	10.6	15
Gas turbine performance prediction via machine learning. <i>Energy</i> , 2020 , 192, 116627	7.9	42
First Observation of an Acetate Switch in a Methanogenic Autotroph (S2). <i>Microbiology Insights</i> , 2020 , 13, 1178636120945300	2.5	O
CFD Analysis of Stratification and Rollover Phenomena in an Industrial-Scale LNG Storage Tank. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 14126-14144	3.9	8
Cascade utilization of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling. <i>Applied Energy</i> , 2020 , 277, 115570	10.7	34
Techno-Economic Evaluation of Cyclopentane Hydrate-Based Desalination with Liquefied Natural Gas Cold Energy Utilization. <i>Energy Technology</i> , 2020 , 8, 1900212	3.5	13
A Surrogate-Assisted Approach for the Optimal Synthesis of Refinery Hydrogen Networks. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 16798-16812	3.9	7
Simulation of a combined cycle gas turbine power plant in Aspen HYSYS. <i>Energy Procedia</i> , 2019 , 158, 3620-3625	2.3	12
Operational Optimization of Processes with Multistream Heat Exchangers Using Data-Driven Predictive Modeling. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 5838-5850	3.9	7
Practically Useful Models for Kinetics of Biodiesel Production. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 4983-4992	8.3	3
A novel cost-effective silica membrane-based process for helium extraction from natural gas. <i>Computers and Chemical Engineering</i> , 2019 , 121, 633-638	4	5
Unified Heat Exchanger Network Synthesis via a Stageless Superstructure. <i>Industrial & amp; Engineering Chemistry Research</i> , 2019 , 58, 5984-6001	3.9	13
Towards energy-efficient LNG terminals: Modeling and simulation of reciprocating compressors. <i>Computers and Chemical Engineering</i> , 2019 , 128, 312-321	4	12
	Dual-effect single-mixed refrigeration cycle: An innovative alternative process for energy-efficient and cost-effective natural gas liquefaction. <i>Applied Energy</i> , 2020, 268, 115022 A Parallel World Framework for scenario analysis in knowledge graphs. <i>Data-Centric Engineering</i> , 2020, 1, Wall superheat at the incipient nucleate boiling condition for natural and forced convection: A CFD approach. <i>Computers and Chemical Engineering</i> , 2020, 134, 106718 Exergoeconomic analysis and optimization of a Gas Turbine-Modular Helium Reactor with new organic Rankine cycle for efficient design and operation. <i>Energy Conversion and Management</i> , 2020, 204, 112311 Simulation-based approach for integrating work within heat exchange networks for sub-ambient processes. <i>Energy Conversion and Management</i> , 2020, 203, 112276 Gas turbine performance prediction via machine learning. <i>Energy</i> , 2020, 192, 116627 First Observation of an Acetate Switch in a Methanogenic Autotroph (52). <i>Microbiology Insights</i> , 2020, 13, 1178636120945300 CFD Analysis of Stratification and Rollover Phenomena in an Industrial-Scale LNG Storage Tank. <i>Industrial & Engineering Chemistry Research</i> , 2020, 59, 14126-14144 Cascade utilization of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling. <i>Applied Energy</i> , 2020, 277, 115570 Techno-Economic Evaluation of Cyclopentane Hydrate-Based Desalination with Liquefied Natural Gas Cold Energy Utilization. <i>Energy Technology</i> , 2020, 8, 1900212 A Surrogate-Assisted Approach for the Optimal Synthesis of Refinery Hydrogen Networks. <i>Industrial & Engineering Chemistry Research</i> , 2019, 58, 16798-16812 Simulation of a combined cycle gas turbine power plant in Aspen HYSYS. <i>Energy Procedia</i> , 2019, 158, 3620-3625 Operational Optimization of Processes with Multistream Heat Exchangers Using Data-Driven Predictive Modeling. <i>Industrial & Engineering Chemistry Research</i> , 2019, 58, 5838-5850 Predictive Modeling. <i>Industrial & Engineering Chemistry Research</i>	Dual-effect single-mixed refrigeration cycle: An innovative alternative process for energy-efficient and cost-effective natural gas liquefaction. <i>Applied Energy</i> , 2020, 268, 115022 A Parallel World Framework for scenario analysis in knowledge graphs. <i>Data-Centric Engineering</i> , 2020, 1, Wall superheat at the incipient nucleate boiling condition for natural and forced convection: A CFD approach. <i>Computers and Chemical Engineering</i> , 2020, 134, 106718 Exergoeconomic analysis and optimization of a Gas Turbine-Modular Helium Reactor with new organic Rankine cycle for efficient design and operation. <i>Energy Conversion and Management</i> , 2020, 1024, 112311 Simulation-based approach for integrating work within heat exchange networks for sub-ambient processes. <i>Energy Conversion and Management</i> , 2020, 203, 112276 Gas turbine performance prediction via machine learning. <i>Energy</i> , 2020, 192, 116627 79 First Observation of an Acetate Switch in a Methanogenic Autotroph (52). <i>Microbiology Insights</i> , 2020, 13, 1178636120945300 CFD Analysis of Stratification and Rollover Phenomena in an Industrial-Scale LNG Storage Tank. <i>Industrial & Bamp; Engineering Chemistry Research</i> , 2020, 59, 14126-14144 Cascade utilization of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling. <i>Applied Energy</i> , 2020, 277, 115570 Techno-Economic Evaluation of Cyclopentane Hydrate-Based Desalination with Liquefied Natural Gas Cold Energy Utilization. <i>Energy Technology</i> , 2020, 8, 1900212 A Surrogate-Assisted Approach for the Optimal Synthesis of Refinery Hydrogen Networks. <i>Industrial & Amp; Engineering Chemistry Research</i> , 2019, 58, 16798-16812 Simulation of a combined cycle gas turbine power plant in Aspen HYSYS. <i>Energy Procedia</i> , 2019, 158, 3620-3625 Operational Optimization of Processes with Multistream Heat Exchangers Using Data-Driven Predictive Modeling. <i>Industrial & Amp; Engineering Chemistry Research</i> , 2019, 58, 5984-6001 10 Practically Useful Models for Kinetics of Biodiesel Produc

259	Economic evaluation of energy efficient hydrate based desalination utilizing cold energy from liquefied natural gas (LNG). <i>Desalination</i> , 2019 , 463, 69-80	10.3	53
258	A novel inlet air cooling system based on liquefied natural gas cold energy utilization for improving power plant performance. <i>Energy Conversion and Management</i> , 2019 , 187, 41-52	10.6	29
257	Evaluating the Benefits of LNG Procurement through Spot Market Purchase. <i>Computer Aided Chemical Engineering</i> , 2019 , 1723-1728	0.6	O
256	Technoenergetic and Economic Analysis of CO2 Conversion 2019 , 413-430		2
255	Surrogate-based black-box optimisation via domain exploration and smart placement. <i>Computers and Chemical Engineering</i> , 2019 , 130, 106567	4	6
254	Technoeconomic Perspective on Natural Gas Liquids and Methanol as Potential Feedstocks for Producing Olefins. <i>Industrial & Damp; Engineering Chemistry Research</i> , 2019 , 58, 963-972	3.9	10
253	Improving design and operation at LNG regasification terminals through a corrected storage tank model. <i>Applied Thermal Engineering</i> , 2019 , 149, 344-353	5.8	15
252	LNG cold energy utilization: Prospects and challenges. <i>Energy</i> , 2019 , 170, 557-568	7.9	127
251	Optimization of helium extraction processes integrated with nitrogen removal units: A comparative study. <i>Computers and Chemical Engineering</i> , 2019 , 121, 354-366	4	16
250	Heating Value Reduction of LNG (Liquefied Natural Gas) by Recovering Heavy Hydrocarbons: Technoeconomic Analyses Using Simulation-Based Optimization. <i>Industrial & Description of Chemistry Research</i> , 2018 , 57, 5924-5932	3.9	17
249	Retrofit Design of Hydrogen Network in Refineries: Mathematical Model and Global Optimization. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 4996-5023	3.9	14
248	A CFD simulation study of boiling mechanism and BOG generation in a full-scale LNG storage tank. <i>Computers and Chemical Engineering</i> , 2018 , 115, 112-120	4	40
247	A novel conceptual design of hydrate based desalination (HyDesal) process by utilizing LNG cold energy. <i>Applied Energy</i> , 2018 , 222, 13-24	10.7	85
246	Framework for work-heat exchange network synthesis (WHENS). AICHE Journal, 2018, 64, 2472-2485	3.6	24
245	Optimal cryogenic processes for nitrogen rejection from natural gas. <i>Computers and Chemical Engineering</i> , 2018 , 112, 101-111	4	13
244	Simulation and optimization of a combined cycle gas turbine power plant for part-load operation. <i>Chemical Engineering Research and Design</i> , 2018 , 131, 29-40	5.5	27
243	Review on the design and optimization of natural gas liquefaction processes for onshore and offshore applications. <i>Chemical Engineering Research and Design</i> , 2018 , 132, 89-114	5.5	8o
242	Evaluating smart sampling for constructing multidimensional surrogate models. <i>Computers and Chemical Engineering</i> , 2018 , 108, 276-288	4	10

241	Locating exchangers in an EIP-wide heat integration network. <i>Computers and Chemical Engineering</i> , 2018 , 108, 57-73	4	12
240	Economic Feasibility of Power Generation by Recovering Cold Energy during LNG (Liquefied Natural Gas) Regasification. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 10687-10695	8.3	24
239	Integrated production planning and inventory management in a multinational pharmaceutical supply chain. <i>Computer Aided Chemical Engineering</i> , 2018 , 41, 551-567	0.6	4
238	New operating strategy for a combined cycle gas turbine power plant. <i>Energy Conversion and Management</i> , 2018 , 171, 1675-1684	10.6	39
237	Genome-Scale In Silico Analysis for Enhanced Production of Succinic Acid in Zymomonas mobilis. <i>Processes</i> , 2018 , 6, 30	2.9	6
236	An ontology framework towards decentralized information management for eco-industrial parks. <i>Computers and Chemical Engineering</i> , 2018 , 118, 49-63	4	30
235	Optimal Design of Boil-Off Gas Liquefaction in LNG Regasification Terminals. <i>Computer Aided Chemical Engineering</i> , 2018 , 44, 2407-2412	0.6	3
234	Modeling Multistream Heat Exchangers (MHEXs) Using Operational Data. <i>Computer Aided Chemical Engineering</i> , 2018 , 44, 2395-2400	0.6	
233	An Ontology Based Cyber-infrastructure for the Development of Smart Eco Industrial Parks. <i>Computer Aided Chemical Engineering</i> , 2018 , 44, 2047-2052	0.6	0
232	Optimal design of boil-off gas reliquefaction process in LNG regasification terminals. <i>Computers and Chemical Engineering</i> , 2018 , 117, 171-190	4	12
231	Adjusting the Heating Value of LNG using a Superstructure for Hydrocarbon Recovery. <i>Computer Aided Chemical Engineering</i> , 2018 , 44, 1105-1110	0.6	2
230	Optimal Drilling Planning by Considering the Subsurface Dynamics Lombing the Flexibilities of Modeling and a Reservoir Simulator. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 16367-1	<i>6</i> 3978	4
229	Exploiting meta-modeling approach to investigate the effect of oil characteristics on the optimal operating conditions and biodiesel properties. <i>Computer Aided Chemical Engineering</i> , 2018 , 43, 157-162	0.6	
228	Dynamic Simulation of a LNG Regasification Terminal and Management of Boil-off Gas. <i>Computer Aided Chemical Engineering</i> , 2018 , 685-690	0.6	5
227	CFD simulation of a full scale LNG storage tank. Computer Aided Chemical Engineering, 2018, 44, 883-888	8 0.6	
226	Exploiting the Synergy between Work and Heat for Holistic Energy Integration. <i>Computer Aided Chemical Engineering</i> , 2018 , 44, 403-408	0.6	2
225	Simulation and optimization of a combined cycle gas turbine power plant under part-load operation. <i>Computer Aided Chemical Engineering</i> , 2018 , 44, 2401-2406	0.6	1
224	LEAPS2: Learning based Evolutionary Assistive Paradigm for Surrogate Selection. <i>Computers and Chemical Engineering</i> , 2018 , 119, 352-370	4	25

223	A Review of Clathrate Hydrate Based Desalination To Strengthen Energy Water Nexus. ACS Sustainable Chemistry and Engineering, 2018, 6, 8093-8107	8.3	163
222	Simulating combined cycle gas turbine power plants in Aspen HYSYS. <i>Energy Conversion and Management</i> , 2018 , 171, 1213-1225	10.6	30
221	Dynamic modelling and optimization of an LNG storage tank in a regasification terminal with semi-analytical solutions for N2-free LNG. <i>Computers and Chemical Engineering</i> , 2017 , 99, 40-50	4	32
220	Towards an ontological infrastructure for chemical process simulation and optimization in the context of eco-industrial parks. <i>Applied Energy</i> , 2017 , 204, 1284-1298	10.7	24
219	Design of computer experiments: A review. <i>Computers and Chemical Engineering</i> , 2017 , 106, 71-95	4	132
218	Retrospective and future perspective of natural gas liquefaction and optimization technologies contributing to efficient LNG supply: A review. <i>Journal of Natural Gas Science and Engineering</i> , 2017 , 45, 165-188	4.6	71
217	A superstructure-based model for multistream heat exchanger design within flow sheet optimization. <i>AICHE Journal</i> , 2017 , 63, 3764-3777	3.6	18
216	Assessing the potential of CO2 utilization with an integrated framework for producing power and chemicals. <i>Journal of CO2 Utilization</i> , 2017 , 19, 49-57	7.6	31
215	Ethylene from natural gas via oxidative coupling of methane and cold energy of LNG. <i>Computer Aided Chemical Engineering</i> , 2017 , 40, 1855-1860	0.6	2
214	Locating Heat Exchangers in an EIP-wide Heat Integration Network. <i>Computer Aided Chemical Engineering</i> , 2017 , 793-798	0.6	
213	Process Synthesis and Optimization of Propylene/Propane Separation Using Vapor Recompression and Self-Heat Recuperation. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 14557-14564	3.9	43
212	Smart Sampling Algorithm for Surrogate Model Development. <i>Computers and Chemical Engineering</i> , 2017 , 96, 103-114	4	41
211	J-Park Simulator, an intelligent system for information management of eco-industrial parks. <i>Energy Procedia</i> , 2017 , 142, 2953-2958	2.3	7
210	Process and Heat Integrated Design of a Novel NGL Recovery Scheme. <i>Computer Aided Chemical Engineering</i> , 2016 , 38, 1845-1850	0.6	
209	Preface to the ICCDU-2015 Special Issue. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 78	395.7984	13
208	Process systems engineering perspective on the planning and development of oil fields. <i>AICHE Journal</i> , 2016 , 62, 2586-2604	3.6	28
207	Evolution and optimization of the dual mixed refrigerant process of natural gas liquefaction. <i>Applied Thermal Engineering</i> , 2016 , 96, 320-329	5.8	75
206	Integrated Oil-Field Management: From Well Placement and Planning to Production Scheduling. <i>Industrial & Discours Chemistry Research</i> , 2016 , 55, 978-994	3.9	23

205	Smart Adaptive Sampling for Surrogate Modelling. Computer Aided Chemical Engineering, 2016, 38, 631-	·636	3
204	Minimizing Power Consumption Related to BOG Reliquefaction in an LNG Regasification Terminal. <i>Industrial & Description of Chemistry Research</i> , 2016 , 55, 7431-7445	3.9	21
203	Metabolic processes of Methanococcus maripaludis and potential applications. <i>Microbial Cell Factories</i> , 2016 , 15, 107	6.4	28
202	Energy penalty estimates for CO2 capture: Comparison between fuel types and capture-combustion modes. <i>Energy</i> , 2016 , 103, 709-714	7.9	50
201	Parameterisation of a biodiesel plant process flow sheet model. <i>Computers and Chemical Engineering</i> , 2016 , 95, 108-122	4	17
200	Shared and practical approach to conserve utilities in eco-industrial parks. <i>Computers and Chemical Engineering</i> , 2016 , 93, 221-233	4	22
199	Work-heat exchanger network synthesis (WHENS). <i>Energy</i> , 2016 , 113, 1006-1017	7.9	35
198	Long-term optimal energy mix planning towards high energy security and low GHG emission. <i>Applied Energy</i> , 2015 , 154, 959-969	10.7	68
197	Modelling Multi Stream Heat Exchangers Using Operational Data. <i>Computer Aided Chemical Engineering</i> , 2015 , 37, 2369-2374	0.6	
196	Energy and cost estimates for capturing CO2 from a dry flue gas using pressure/vacuum swing adsorption. <i>Chemical Engineering Research and Design</i> , 2015 , 102, 354-367	5.5	50
195	Sequential coordinate random search for optimal operation of LNG (liquefied natural gas) plant. <i>Energy</i> , 2015 , 89, 757-767	7.9	27
194	A Drilling Scheduling Toolbox for Oil and Gas Reservoirs. <i>Computer Aided Chemical Engineering</i> , 2015 , 2453-2458	0.6	4
193	Modeling and Experimental Validation of Electrochemical Reduction of CO2to CO in a Microfluidic Cell. <i>Journal of the Electrochemical Society</i> , 2015 , 162, F23-F32	3.9	49
192	CO 2 capture in cation-exchanged metal®rganic frameworks: Holistic modeling from molecular simulation to process optimization. <i>Chemical Engineering Science</i> , 2015 , 124, 70-78	4.4	35
191	Flux measurements and maintenance energy for carbon dioxide utilization by Methanococcus maripaludis. <i>Microbial Cell Factories</i> , 2015 , 14, 146	6.4	12
190	Experimental Validation Of in silico Flux Predictions from A Genome-Scale Model (iMM518) For Carbon Dioxide Utilization by M. maripaludis. <i>Computer Aided Chemical Engineering</i> , 2015 , 37, 2153-2158	8 ^{0.6}	
189	CO2 capture from dry flue gas by vacuum swing adsorption: A pilot plant study. <i>AICHE Journal</i> , 2014 , 60, 1830-1842	3.6	153
188	Parametric optimization with uncertainty on the left hand side of linear programs. <i>Computers and Chemical Engineering</i> , 2014 , 60, 31-40	4	16

187	Efficient algorithm for simultaneous synthesis of heat exchanger networks. <i>Chemical Engineering Science</i> , 2014 , 105, 53-68	4.4	41
186	Comparing SiCHA and 4A Zeolite for Propylene/Propane Separation using a Surrogate-Based Simulation/Optimization Approach. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 16973-16	6 98 3	19
185	Improved Synthesis of Hydrogen Networks for Refineries. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 16948-16963	3.9	19
184	Design of biomass and natural gas based IGFC using multi-objective optimization. <i>Energy</i> , 2014 , 73, 635	- 6 53	13
183	Well Placement, Infrastructure Design, Facility Allocation, and Production Planning in Multireservoir Oil Fields with Surface Facility Networks. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 11033-11049	3.9	21
182	A novel conceptual design of parallel nitrogen expansion liquefaction process for small-scale LNG (liquefied natural gas) plant in skid-mount packages. <i>Energy</i> , 2014 , 75, 349-359	7.9	57
181	A genome-scale metabolic model of Methanococcus maripaludis S2 for CO2 capture and conversion to methane. <i>Molecular BioSystems</i> , 2014 , 10, 1043-54		28
180	Genome-scale metabolic network reconstruction and in silico flux analysis of the thermophilic bacterium Thermus thermophilus HB27. <i>Microbial Cell Factories</i> , 2014 , 13, 61	6.4	14
179	Optimization of One- and Two-Staged Kinetically Controlled CO2 Capture Processes from Postcombustion Flue Gas on a Carbon Molecular Sieve. <i>Industrial & Damp; Engineering Chemistry Research</i> , 2014 , 53, 9186-9198	3.9	11
178	Robust Supply-Chain Operations through Rescheduling 2014 , 89-120		
178	Robust Supply-Chain Operations through Rescheduling 2014 , 89-120 Chemical Supply Chain Redesign 2014 , 245-299		1
		0.6	1 2
177	Chemical Supply Chain Redesign 2014 , 245-299 Modeling and Simulating Electrochemical Reduction of CO2 in a Microfluidic Cell. <i>Computer Aided</i>	0.6	
177 176	Chemical Supply Chain Redesign 2014, 245-299 Modeling and Simulating Electrochemical Reduction of CO2 in a Microfluidic Cell. Computer Aided Chemical Engineering, 2014, 639-644 Perspectives on the Design and Planning of Oil Field Infrastructure. Computer Aided Chemical		2
177 176 175	Chemical Supply Chain Redesign 2014, 245-299 Modeling and Simulating Electrochemical Reduction of CO2 in a Microfluidic Cell. Computer Aided Chemical Engineering, 2014, 639-644 Perspectives on the Design and Planning of Oil Field Infrastructure. Computer Aided Chemical Engineering, 2014, 163-172 In silico modeling and evaluation of Gordonia alkanivorans for biodesulfurization. Molecular		6
177 176 175	Chemical Supply Chain Redesign 2014, 245-299 Modeling and Simulating Electrochemical Reduction of CO2 in a Microfluidic Cell. Computer Aided Chemical Engineering, 2014, 639-644 Perspectives on the Design and Planning of Oil Field Infrastructure. Computer Aided Chemical Engineering, 2014, 163-172 In silico modeling and evaluation of Gordonia alkanivorans for biodesulfurization. Molecular BioSystems, 2013, 9, 2530-40 Simultaneous synthesis approaches for cost-effective heat exchanger networks. Chemical	0.6	6 36
177 176 175 174	Chemical Supply Chain Redesign 2014, 245-299 Modeling and Simulating Electrochemical Reduction of CO2 in a Microfluidic Cell. Computer Aided Chemical Engineering, 2014, 639-644 Perspectives on the Design and Planning of Oil Field Infrastructure. Computer Aided Chemical Engineering, 2014, 163-172 In silico modeling and evaluation of Gordonia alkanivorans for biodesulfurization. Molecular BioSystems, 2013, 9, 2530-40 Simultaneous synthesis approaches for cost-effective heat exchanger networks. Chemical Engineering Science, 2013, 98, 231-245 Propylene/Propane Separation Using SiCHA. Industrial & Samp; Engineering Chemistry Research, 2013,	0.6	2 6 36 53

169	Multiobjective Optimization of a Four-Step Adsorption Process for Postcombustion CO2 Capture Via Finite Volume Simulation. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 4249-4265	3.9	136
168	Genome-scale metabolic network reconstruction and in silico analysis of Methanococcus maripaludis S2. <i>Computer Aided Chemical Engineering</i> , 2013 , 181-186	0.6	1
167	Evaluation of utilization alternatives for stranded natural gas. <i>Energy</i> , 2012 , 40, 317-328	7.9	79
166	Optimization of multi-refinery hydrogen networks. Computer Aided Chemical Engineering, 2012, 31, 13	31⊝1∕33	5 5
165	Roles of sulfite oxidoreductase and sulfite reductase in improving desulfurization by Rhodococcus erythropolis. <i>Molecular BioSystems</i> , 2012 , 8, 2724-32		36
164	Synthesis Framework of Biorefinery Systems for Lignocellulosic Biorenewables. <i>Computer Aided Chemical Engineering</i> , 2012 , 245-249	0.6	
163	Discrete Equilibrium Data from Dynamic Column Breakthrough Experiments. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 14834-14844	3.9	6
162	Microgrid Scheduling for Reliable, Cost-Effective, and Environmentally Friendly Energy Management. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 120614123154002	3.9	2
161	Nonisothermal Pore Diffusion Model for a Kinetically Controlled Pressure Swing Adsorption Process. <i>Industrial & Diffusion Chemistry Research</i> , 2012 , 51, 10659-10670	3.9	20
160	Integrated supply chain planning for multinational pharmaceutical enterprises. <i>Computers and Chemical Engineering</i> , 2012 , 42, 168-177	4	78
159	A Comparison Study of Adjoint-Based Gradient Search Technique and Mathematical Programming for Optimal Well-Placement. <i>Computer Aided Chemical Engineering</i> , 2012 , 31, 665-669	0.6	
158	Simultaneous Optimal Placement of Injector and Producer Wells Using Mathematical Programming. <i>Computer Aided Chemical Engineering</i> , 2012 , 31, 1482-1486	0.6	1
157	Minimize Flaring through Integration with Fuel Gas Networks. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 12630-12641	3.9	20
156	Contract selection under uncertainty. Computer Aided Chemical Engineering, 2012, 31, 1487-1491	0.6	2
155	A Novel Multi-Grid Formulation for Scheduling Semi-Continuous Plants. <i>Computer Aided Chemical Engineering</i> , 2012 , 31, 1075-1079	0.6	3
154	In Silico Analysis to Explore the Effect of Various Carbon Sources on Ethanol Production in Zymomonas mobilis. <i>Computer Aided Chemical Engineering</i> , 2012 , 1382-1386	0.6	1
153	Heat Exchanger Network Synthesis Using a Hyperstructure of Stagewise Stream Superstructures. <i>Computer Aided Chemical Engineering</i> , 2012 , 1552-1556	0.6	2
152	Optimizing the PSA process of propylene/propane using Neuro-Fuzzy modeling. <i>Computer Aided Chemical Engineering</i> , 2012 , 31, 1336-1340	0.6	4

151	PlanPerfect: An integrated production planning and decision support tool for pharmaceutical plants. <i>Computer Aided Chemical Engineering</i> , 2012 , 30, 372-376	0.6	
150	Heat exchanger network synthesis using a stagewise superstructure with non-isothermal mixing. <i>Chemical Engineering Science</i> , 2012 , 73, 30-43	4.4	74
149	Preliminary synthesis of work exchange networks. Computers and Chemical Engineering, 2012, 37, 262-2	2747	56
148	In silico Simulation for Enhancing Production of Organic Acids in Zymomonas mobilis. <i>Computer Aided Chemical Engineering</i> , 2012 , 31, 900-904	0.6	1
147	Intelligent Decision-Support Tools for Effective and Integrated Operational Planning in Pharmaceutical Plants. <i>Computer Aided Chemical Engineering</i> , 2012 , 31, 1165-1169	0.6	1
146	Improved Strains for Biological Treatment of Wastewater. <i>Computer Aided Chemical Engineering</i> , 2012 , 895-899	0.6	
145	Preliminary Synthesis of Fuel Gas Networks to Conserve Energy and Preserve the Environment. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 7414-7427	3.9	21
144	Scheduling Gasoline Blending Operations from Recipe Determination to Shipping Using Unit Slots. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 9156-9174	3.9	45
143	TOPS: Advanced Decision Support System for Port and Maritime Chemical Logistics. <i>Asian Journal of Shipping and Logistics</i> , 2011 , 27, 143-156	3.5	2
142	Surrogate-based VSA Process Optimization for Post-Combustion CO2 Capture. <i>Computer Aided Chemical Engineering</i> , 2011 , 29, 402-406	0.6	9
141	Integrated Supply Chain Planning for Multinational Pharmaceutical Enterprises. <i>Computer Aided Chemical Engineering</i> , 2011 , 29, 1075-1079	0.6	1
140	Flux-based analysis of sulfur metabolism in desulfurizing strains of Rhodococcus erythropolis. <i>FEMS Microbiology Letters</i> , 2011 , 315, 115-21	2.9	20
139	NADPH-dependent pgi-gene knockout Escherichia coli metabolism producing shikimate on different carbon sources. <i>FEMS Microbiology Letters</i> , 2011 , 324, 10-6	2.9	19
138	A sharp cut algorithm for optimization. <i>Computers and Chemical Engineering</i> , 2011 , 35, 2716-2728	4	O
137	Integrated campaign planning and resource allocation in batch plants. <i>Computers and Chemical Engineering</i> , 2011 , 35, 2990-3001	4	14
136	Genome-scale modeling and in silico analysis of ethanologenic bacteria Zymomonas mobilis. <i>Biotechnology and Bioengineering</i> , 2011 , 108, 655-65	4.9	65
135	Reconstruction of a genome-scale metabolic network of Rhodococcus erythropolis for desulfurization studies. <i>Molecular BioSystems</i> , 2011 , 7, 3122-31		27
134	Selection of Liquefied Natural Gas (LNG) Contracts for Minimizing Procurement Cost. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 10298-10312	3.9	31

133	Investment portfolios under uncertainty for utilizing natural gas resources. <i>Computers and Chemical Engineering</i> , 2011 , 35, 1827-1837	4	15
132	A linear diversity constraint Application to scheduling in microgrids. <i>Energy</i> , 2011 , 36, 4235-4243	7.9	38
131	A taxonomy and review of the multiple criteria decision-making literature in chemical engineering. <i>International Journal of Multicriteria Decision Making</i> , 2011 , 1, 407	0.9	7
130	Integrated Campaign Planning and Resource Allocation in Batch Plants. <i>Computer Aided Chemical Engineering</i> , 2010 , 1183-1188	0.6	1
129	An Analysis of Some Unit-Specific Event-Based Models for the Short-Term Scheduling of Noncontinuous Processes. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 633-647	3.9	28
128	Operation Planning of Multiparcel Tankers under Fuel Price Uncertainty. <i>Industrial & amp;</i> Engineering Chemistry Research, 2010 , 49, 6104-6114	3.9	10
127	Genome-scale modeling and in silico analysis of mouse cell metabolic network. <i>Molecular BioSystems</i> , 2010 , 6, 152-61		61
126	Combined data preprocessing and multivariate statistical analysis characterizes fed-batch culture of mouse hybridoma cells for rational medium design. <i>Journal of Biotechnology</i> , 2010 , 150, 94-100	3.7	23
125	Supply chain redesign and new process introduction in multipurpose plants. <i>Chemical Engineering Science</i> , 2010 , 65, 2596-2607	4.4	26
124	Efficient bulk maritime logistics for the supply and delivery of multiple chemicals. <i>Computers and Chemical Engineering</i> , 2010 , 34, 2118-2128	4	25
123	Modeling and Simulation of Gas Pipeline Network for Operational and Infrastructural Decisions. <i>Computer Aided Chemical Engineering</i> , 2009 , 26, 453-458	0.6	3
122	Optimizing Compressor Operations in an LNG Plant 2009 , 179-184		13
121	Strain improvement and process development for biobutanol production. <i>Recent Patents on Biotechnology</i> , 2009 , 3, 202-10	2.2	23
120	Crude Oil Transshipment Using Floating, Storage, and Offloading Platforms (FSOPs). <i>Computer Aided Chemical Engineering</i> , 2009 , 2085-2090	0.6	1
119	Multi-Period Continuous-Time Formulation for Integrated Scheduling, Blending, and Distribution of Refinery Products. <i>Computer Aided Chemical Engineering</i> , 2009 , 27, 1563-1568	0.6	1
119		o.6 3.6	87
	Refinery Products. <i>Computer Aided Chemical Engineering</i> , 2009 , 27, 1563-1568 Operational modeling of multistream heat exchangers with phase changes. <i>AICHE Journal</i> , 2009 ,		

115	Synthesis of heat exchanger networks with nonisothermal phase changes. AICHE Journal, 2009, 56, NA	n-Ny46	10
114	Piecewise linear relaxation of bilinear programs using bivariate partitioning. <i>AICHE Journal</i> , 2009 , 56, 1880-1893	3.6	54
113	A novel approach to scheduling multipurpose batch plants using unit-slots. AICHE Journal, 2009, 56, 18	359 . 687	'9 59
112	Characterizing Escherichia coli DH5alpha growth and metabolism in a complex medium using genome-scale flux analysis. <i>Biotechnology and Bioengineering</i> , 2009 , 102, 923-34	4.9	45
111	Elucidation of metabolism in hybridoma cells grown in fed-batch culture by genome-scale modeling. <i>Biotechnology and Bioengineering</i> , 2009 , 102, 1494-504	4.9	22
110	Efficient heuristics for inventory placement in acyclic networks. <i>Computers and Operations Research</i> , 2009 , 36, 2899-2904	4.6	19
109	Fast biodegradation of long chain n-alkanes and crude oil at high concentrations with Rhodococcus sp. Moj-3449. <i>Enzyme and Microbial Technology</i> , 2009 , 45, 195-202	3.8	56
108	From PSE to PSE2Decision support for resilient enterprises. <i>Computers and Chemical Engineering</i> , 2009 , 33, 1939-1949	4	14
107	Robustness Measures for Operation Schedules Subject to Disruptions. <i>Industrial & amp; Engineering Chemistry Research</i> , 2009 , 48, 9204-9214	3.9	4
106	Supply Chain RedesignMultimodal Optimization Using a Hybrid Evolutionary Algorithm. <i>Industrial</i> & amp; Engineering Chemistry Research, 2009 , 48, 11094-11107	3.9	12
105	Optimization of Compressor Networks in LNG Operations. <i>Computer Aided Chemical Engineering</i> , 2009 , 27, 1767-1772	0.6	14
104	Minimizing Boil-Off Losses in Liquefied Natural Gas Transportation. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 9571-9580	3.9	62
103	Unit Slots Based Short-Term Scheduling for Multipurpose Batch Plants. <i>Computer Aided Chemical Engineering</i> , 2009 , 1989-1994	0.6	1
102	Chemical Logistics ©oing Beyond Intra-Plant Excellence. <i>Computer Aided Chemical Engineering</i> , 2009 , 29-34	0.6	4
101	Evaluation of LNG, CNG, GTL and NGH for Monetization of Stranded Associated Gas with the Incentive of Carbon Credit 2009 ,		4
100	Efficient Bulk Maritime Logistics for the Supply and Delivery of Multiple Chemicals. <i>Computer Aided Chemical Engineering</i> , 2009 , 27, 1977-1982	0.6	
99	Web-based applications for building, managing and analysing kinetic models of biological systems. <i>Briefings in Bioinformatics</i> , 2009 , 10, 65-74	13.4	19
98	Synthesis of Heat Exchanger Networks Involving Phase Changes 2009 , 185-192		1

(2007-2008)

97	Selection of Third-Party Service Contracts for Chemical Logistics. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 8301-8316	3.9	5
96	Novel MILP Models for Scheduling Permutation Flowshops. <i>Chemical Product and Process Modeling</i> , 2008 , 3,	1.1	2
95	Supply chain risk management through HAZOP and dynamic simulation. <i>Computer Aided Chemical Engineering</i> , 2008 , 37-42	0.6	3
94	Piecewise MILP under- and overestimators for global optimization of bilinear programs. <i>AICHE Journal</i> , 2008 , 54, 991-1008	3.6	101
93	Scheduling multistage batch plants with parallel units and no interstage storage. <i>Computers and Chemical Engineering</i> , 2008 , 32, 671-693	4	55
92	Decision support for integrated refinery supply chains: Part 1. Dynamic simulation. <i>Computers and Chemical Engineering</i> , 2008 , 32, 2767-2786	4	51
91	Decision support for integrated refinery supply chains. <i>Computers and Chemical Engineering</i> , 2008 , 32, 2787-2800	4	42
90	Supply chain redesign through optimal asset management and capital budgeting. <i>Computers and Chemical Engineering</i> , 2008 , 32, 3153-3169	4	23
89	Supply Chain Management in the Chemical Industry: Trends, Issues, and Research Interests 2008 , 45-67		
88	Optimal Contract Selection for the Global Supply and Distribution of Raw Materials. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 6522-6539	3.9	22
87	Heuristic rescheduling of crude oil operations to manage abnormal supply chain events. <i>AICHE Journal</i> , 2007 , 53, 397-422	3.6	43
86	Improving the robustness and efficiency of crude scheduling algorithms. AICHE Journal, 2007, 53, 2659-	2660	67
85	A model-based rescheduling framework for managing abnormal supply chain events. <i>Computers and Chemical Engineering</i> , 2007 , 31, 496-518	4	49
84	Novel continuous-time formulations for scheduling multi-stage batch plants with identical parallel units. <i>Computers and Chemical Engineering</i> , 2007 , 31, 1671-1693	4	22
83	Spinning wave motion in frontal polymerization. <i>Chemical Engineering Science</i> , 2007 , 62, 1448-1455	4.4	6
82	Scheduling multistage, multiproduct batch plants with nonidentical parallel units and unlimited intermediate storage. <i>Chemical Engineering Science</i> , 2007 , 62, 1549-1566	4.4	57
81	Optimal supply chain redesign using genetic algorithm. <i>Computer Aided Chemical Engineering</i> , 2007 , 24, 703-708	0.6	
80	A novel CDU model for refinery planning. Asia-Pacific Journal of Chemical Engineering, 2007, 2, 282-293	1.3	7

79	Identifying synergistically switching pathways for multi-product strain improvement using multiobjective flux balance analysis. <i>Computer Aided Chemical Engineering</i> , 2007 , 1007-1012	0.6	
78	Modeling and simulation of main cryogenic heat exchanger in a base-load liquefied natural gas plant. <i>Computer Aided Chemical Engineering</i> , 2007 , 24, 219-224	0.6	15
77	Global multiproduct production Distribution planning with duty drawbacks. <i>AICHE Journal</i> , 2006 , 52, 595-610	3.6	33
76	Scheduling Trans-shipment Operations in Maritime Chemical Transportation. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 1955-1973	3.9	16
75	Scheduling Tanker-Lightering Operations in Crude Oil Transportation. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 8063-8082	3.9	5
74	CAPACITY MANAGEMENT IN THE CHEMICAL SUPPLY CHAIN. <i>IFAC Postprint Volumes IPPV /</i> International Federation of Automatic Control, 2006 , 39, 253-258		2
73	Business decision making in the chemical industry: PSE opportunities. <i>Computer Aided Chemical Engineering</i> , 2006 , 21, 107-117	0.6	2
72	Novel continuous-time formulations for scheduling multi-stage multi-product batch plants with identical parallel units. <i>Computer Aided Chemical Engineering</i> , 2006 , 1979-1984	0.6	
71	Routing and cargo allocation planning of a parcel tanker. <i>Computer Aided Chemical Engineering</i> , 2006 , 21, 1985-1990	0.6	4
70	Refinery planning under correlated and truncated price and demand uncertainties. <i>Computer Aided Chemical Engineering</i> , 2006 , 21, 2123-2128	0.6	1
69	An integrated model for planning in global chemical supply chains. <i>Computer Aided Chemical Engineering</i> , 2006 , 2189-2194	0.6	3
68	A Multi-Agent Approach to Supply Chain Management in the Chemical Industry. <i>Studies in Computational Intelligence</i> , 2006 , 419-450	0.8	3
67	Contract Selection and Tank Allocation in a Terminaling and Storage Facility. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 7435-7450	3.9	3
66	An online decision support framework for managing abnormal supply chain events. <i>Computer Aided Chemical Engineering</i> , 2005 , 985-990	0.6	19
65	A simpler better slot-based continuous-time formulation for short-term scheduling in multipurpose batch plants. <i>Chemical Engineering Science</i> , 2005 , 60, 2679-2702	4.4	148
64	Scheduling tank container movements for chemical logistics. AICHE Journal, 2005, 51, 178-197	3.6	19
63	A continuous-time formulation for scheduling multi-stage multi-product batch plants with non-identical parallel units. <i>Computer Aided Chemical Engineering</i> , 2005 , 20, 1165-1170	0.6	1
62	Heuristic algorithms for scheduling an automated wet-etch station. <i>Computers and Chemical Engineering</i> , 2004 , 28, 363-379	4	27

61	Novel solution approach for optimizing crude oil operations. AICHE Journal, 2004, 50, 1177-1197	3.6	100
60	A new continuous-time formulation for scheduling crude oil operations. <i>Chemical Engineering Science</i> , 2004 , 59, 1325-1341	4.4	109
59	Improving the logistics of multi-compartment chemical tankers. <i>Computers and Chemical Engineering</i> , 2004 , 28, 1267-1283	4	60
58	An improved formulation for scheduling an automated wet-etch station. <i>Computers and Chemical Engineering</i> , 2004 , 29, 217-224	4	17
57	Planning in Pharmaceutical Supply Chains with Outsourcing and New Product Introductions. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 8293-8306	3.9	32
56	Regulatory Factors and Capacity-Expansion Planning in Global Chemical Supply Chains. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 3364-3380	3.9	48
55	Prediction of binary gas diffusion in carbon molecular sieves at high pressure. <i>AICHE Journal</i> , 2004 , 50, 351-367	3.6	19
54	Short-term scheduling of refinery operations from unloading crudes to distillation. <i>Computer Aided Chemical Engineering</i> , 2003 , 15, 304-309	0.6	3
53	An improved MILP formulation for scheduling an automated wet-etch station. <i>Computer Aided Chemical Engineering</i> , 2003 , 15, 1181-1186	0.6	
52	Dispersed plug flow model for steady-state laminar flow in a tube with a first order sink at the wall. <i>Chemical Engineering Science</i> , 2003 , 58, 71-80	4.4	5
51	An Improved MILP Formulation for Scheduling Multiproduct, Multistage Batch Plants. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 2365-2380	3.9	106
50	Binary and Ternary Adsorption Kinetics of Gases in Carbon Molecular Sieves. <i>Langmuir</i> , 2003 , 19, 5722-	57434	30
49	A Slot-Based Formulation for Single-Stage Multiproduct Batch Plants with Multiple Orders per Product. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 1914-1924	3.9	17
48	Scheduling a Two-Stage Multiproduct Process with Limited Product Shelf Life in Intermediate Storage. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 490-508	3.9	28
47	An MILP Approach to Automated Wet-Etch Station Scheduling. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 1391-1399	3.9	29
46	Resource-Constrained Scheduling of Parallel Production Lines Using Asynchronous Slots. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 6832-6842	3.9	38
45	Agent-based supply chain management 1 : framework. <i>Computers and Chemical Engineering</i> , 2002 , 26, 1755-1769	4	149
44	Agent-based supply chain management I : a refinery application. <i>Computers and Chemical Engineering</i> , 2002 , 26, 1771-1781	4	92

43	Branching and stability of stationary solutions in multi-equation systems. <i>Chemical Engineering Science</i> , 2002 , 57, 1251-1267	4.4	1
42	PLANE WAVES IN SYSTEMS HAVING AN INTRINSIC TIME LAG. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2002 , 12, 193-204	2	1
41	Agent-based Refinery Supply Chain Management. Computer Aided Chemical Engineering, 2002, 895-900	0.6	3
40	Identification of Transport Mechanism in Adsorbent Micropores from Column Dynamics. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 1098-1106	3.9	29
39	Scheduling Parallel Production Lines with Resource Constraints. 1. Model Formulation. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 779-789	3.9	45
38	Scheduling Parallel Production Lines with Resource Constraints. 2. Decomposition Algorithm. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 790-800	3.9	27
37	Modeling support resistance in zeolite membranes. <i>Journal of Membrane Science</i> , 2001 , 186, 109-121	9.6	14
36	Planning production on a single processor with sequence-dependent setups part 1: determination of campaigns. <i>Computers and Chemical Engineering</i> , 2001 , 25, 1021-1030	4	23
35	Planning production on a single processor with sequence-dependent setups. Part 2: campaign sequencing and scheduling. <i>Computers and Chemical Engineering</i> , 2001 , 25, 1031-1043	4	6
34	Application of reductive perturbation method to branching of stationary solutions. <i>Chemical Engineering Science</i> , 2001 , 56, 3915-3922	4.4	1
33	Modeling and Monte Carlo simulation of TCDD transport in a river. Water Research, 2001, 35, 1263-79	12.5	15
32	Effect of sorbateBorbate interaction on micropore diffusion in steady-state adsorption processes. <i>Chemical Engineering Science</i> , 2000 , 55, 3529-3541	4.4	13
31	Scheduling a Single-Product Reentrant Process with Uniform Processing Times. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 4203-4214	3.9	4
30	Two-parameter periodic solutions near a Hopf point in delay-differential equations. <i>Journal of Physics A</i> , 1999 , 32, 4509-4519		3
29	Analysis of a tubular zeolite membrane process. <i>Chemical Engineering Science</i> , 1999 , 54, 4111-4121	4.4	3
28	Planning and Scheduling of Parallel Semicontinuous Processes. 1. Production Planning. <i>Industrial</i>	3.9	122
	& Engineering Chemistry Research, 1997 , 36, 2691-2700	J.J	
27	& Engineering Chemistry Research, 1997, 36, 2691-2700 Planning and Scheduling of Parallel Semicontinuous Processes. 2. Short-Term Scheduling. Industrial & Engineering Chemistry Research, 1997, 36, 2701-2714	3.9	119

25	An interactive approach to the design of noncontinuous plants. <i>Computers and Chemical Engineering</i> , 1993 , 17, 71-93	4	5	
24	Optimal Cycle Times in Multistage Serial Systems with Set-Up and Inventory Costs. <i>Management Science</i> , 1992 , 38, 1467-1481	3.9	18	
23	Scheduling algorithms for serial multiproduct batch processes with tardiness penalties. <i>Computers and Chemical Engineering</i> , 1991 , 15, 283-286	4	18	
22	Preliminary design of multiproduct noncontinuous plants using simulated annealing. <i>Computers and Chemical Engineering</i> , 1991 , 15, 451-469	4	68	
21	Intermediate storage for noncontinuous process variability and failures. <i>Chemical Engineering Science</i> , 1991 , 46, 3269-3282	4.4	1	
20	An evaluation of simulated annealing for batch process scheduling. <i>Industrial & Engineering Chemistry Research</i> , 1991 , 30, 163-169	3.9	58	
19	A general stochastic model for intermediate storage in noncontinuous processes. <i>Chemical Engineering Science</i> , 1990 , 45, 3533-3549	4.4	4	
18	Completion time algorithms for serial multiproduct batch processes with shared storage. <i>Computers and Chemical Engineering</i> , 1990 , 14, 49-69	4	33	
17	Scheduling in serial multiproduct batch processes with due-date penalties. <i>Industrial & Engineering Chemistry Research</i> , 1990 , 29, 580-590	3.9	31	
16	Optimal Cycle Times in a Two-Stage Serial System With Set-Up and Inventory Costs. <i>IIE Transactions</i> , 1989 , 21, 324-332		8	
15	Design of multiproduct batch processes with finite intermediate storage. <i>Computers and Chemical Engineering</i> , 1989 , 13, 127-139	4	48	
14	Completion times in serial mixed-storage multiproduct processes with transfer and set-up times. <i>Computers and Chemical Engineering</i> , 1989 , 13, 175-186	4	34	
13	Optimal design of batch plants with single production routes. <i>Industrial & amp; Engineering Chemistry Research</i> , 1989 , 28, 1191-1202	3.9	17	
12	Sizing of intermediate storage for variabilities in noncontinuous processes with parallel units. <i>Computers and Chemical Engineering</i> , 1988 , 12, 561-572	4	7	
11	A modified heuristic for an initial sequence in flowshop scheduling. <i>Industrial & amp; Engineering Chemistry Research</i> , 1988 , 27, 1654-1658	3.9	5	
10	Scheduling in serial multiproduct batch processes with finite interstage storage: mixed integer linear program formulation. <i>Industrial & Engineering Chemistry Research</i> , 1988 , 27, 1840-1848	3.9	65	
9	Intermediate storage in noncontinuous processes involving stages of parallel units. <i>AICHE Journal</i> , 1985 , 31, 44-52	3.6	33	
8	Deterministic variability analysis for intermediate storage in noncontinuous processes. Part I: Allowability conditions. <i>AICHE Journal</i> , 1985 , 31, 1516-1527	3.6	15	

7	Deterministic variability analysis for intermediate storage in noncontinuous processes: Part II: Storage sizing for serial systems. <i>AICHE Journal</i> , 1985 , 31, 1528-1537	3.6	11
6	Optimal selection of intermediate storage tank capacity in a periodic batch/semicontinuous process. <i>AICHE Journal</i> , 1983 , 29, 588-596	3.6	21
5	Application of multi-objective simulation-optimization techniques to inventory management problems		4
4	Robust Supply-Chain Operations through Rescheduling89-120		
3	Chemical Supply Chain Redesign245-299		
2	Progress and prospect of hydrate-based desalination technology. Frontiers in Energy,1	2.6	2
1	Unsteady characteristics of sleeping thermal comfort during defrosting of a T-ASHP system. <i>Indoor and Built Environment</i> ,1420326X2210792	1.8	