Erik Reichelt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1015079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fiber based structured materials for catalytic applications. Applied Catalysis A: General, 2014, 476, 78-90.	4.3	94
2	Techno-economic analysis of a co-electrolysis-based synthesis process for the production of hydrocarbons. Applied Energy, 2018, 215, 309-320.	10.1	62
3	Economic assessment of Power-to-Liquid processes – Influence of electrolysis technology and operating conditions. Applied Energy, 2021, 292, 116655.	10.1	35
4	Generalized correlations for mass transfer and pressure drop in fiber-based catalyst supports. Chemical Engineering Journal, 2017, 325, 655-664.	12.7	21
5	Oxidative Dryâ€Reforming of Biogas: Reactor Design and SOFC System Integration. Energy Technology, 2013, 1, 48-58.	3.8	19
6	Design and evaluation of a Fischer-Tropsch process for the production of waxes from biogas. Energy, 2017, 132, 370-381.	8.8	18
7	Co-Electrolysis with CFY-Stacks. ECS Transactions, 2017, 78, 3089-3102.	0.5	14
8	Economic evaluation of low-carbon steelmaking via coupling of electrolysis and direct reduction. Journal of Cleaner Production, 2021, 328, 129502.	9.3	13
9	Derivation and Application of a Generalized Correlation for Mass Transfer in Packed Beds. Chemie-Ingenieur-Technik, 2017, 89, 390-400.	0.8	11
10	Assessment of fossil-free steelmaking based on direct reduction applying high-temperature electrolysis. Cleaner Engineering and Technology, 2021, 4, 100158.	4.0	11
11	High Temperature Coâ€Electrolysis as a Key Technology for CO 2 Emission Mitigation – AÂModelâ€Based Assessment of CDA and CCU. Chemie-Ingenieur-Technik, 2020, 92, 1044-1058.	0.8	9
12	Spatially-resolved reaction profiles in Fischer-Tropsch synthesis – influence of operating conditions and promotion for iron-based catalysts. Catalysis Communications, 2021, 158, 106335.	3.3	9
13	Porous Perovskite Fibers – Preparation by Wet Phase Inversion Spinning and Catalytic Activity. Chemical Engineering and Technology, 2014, 37, 1146-1154.	1.5	6
14	Ironâ€Based Fischerâ€Tropsch Catalysts for Higher Alcohol Synthesis. Chemie-Ingenieur-Technik, 2018, 90, 713-720.	0.8	5
15	Co-Electrolysis CFY-Stack Operation and Integration for Carbon Capture and Utilization. ECS Transactions, 2019, 91, 2579-2587.	0.5	4
16	Thermodynamic Influence Analysis of Available Fuels and Reforming Methods on SOFC System Efficiency. ECS Transactions, 2011, 35, 955-962.	0.5	2
17	Production of Synthesis Gas from Biogas – Reactor Design and Integration into a Solid Oxide Fuel Cell System. Chemie-Ingenieur-Technik, 2014, 86, 486-496.	0.8	2
18	Reaktoren für Dreiphasen-Reaktionen: Monolithreaktoren. Springer Reference Naturwissenschaften, 2019, , 1-42.	0.2	0

#	Article	IF	CITATIONS
19	Reaktoren für Dreiphasen-Reaktionen: Monolithreaktoren. Springer Reference Naturwissenschaften, 2020, , 919-960.	0.2	0