Xiaojing Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1015032/publications.pdf

Version: 2024-02-01

759233 794594 22 444 12 19 h-index citations g-index papers 24 24 24 537 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Signatures of fluid–fluid displacement in porous media: wettability, patterns and pressures. Journal of Fluid Mechanics, 2019, 875, .	3.4	72
2	Wettability and Lenormand's diagram. Journal of Fluid Mechanics, 2021, 923, .	3.4	47
3	Rock dissolution patterns and geochemical shutdown of –brine–carbonate reactions during convective mixing in porous media. Journal of Fluid Mechanics, 2015, 764, 296-315.	3.4	43
4	Pattern formation and coarsening dynamics in three-dimensional convective mixing in porous media. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120355.	3.4	42
5	Multiscale Digital Porous Rock Reconstruction Using Template Matching. Water Resources Research, 2019, 55, 6911-6922.	4.2	42
6	Improved characterization of heterogeneous permeability in saline aquifers from transient pressure data during freshwater injection. Water Resources Research, 2017, 53, 4444-4458.	4.2	26
7	Viscous fingering with partially miscible fluids. Physical Review Fluids, 2017, 2, .	2.5	25
8	Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface. Physical Review Letters, 2018, 120, 144501.	7.8	22
9	Crustal fingering facilitates free-gas methane migration through the hydrate stability zone. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31660-31664.	7.1	22
10	Thermodynamic coarsening arrested by viscous fingering in partially miscible binary mixtures. Physical Review E, 2016, 94, 033111.	2.1	21
11	Pore-scale modeling of phase change in porous media. Physical Review Fluids, 2018, 3, .	2.5	18
12	Hydrate Formation on Marine Seep Bubbles and the Implications for Water Column Methane Dissolution. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017363.	2.6	14
13	Uncertainty in modeled and observed climate change impacts on <scp>A</scp> merican <scp>M</scp> idwest hydrology. Water Resources Research, 2015, 51, 3635-3646.	4.2	12
14	Xenon Hydrate as an Analog of Methane Hydrate in Geologic Systems Out of Thermodynamic Equilibrium. Geochemistry, Geophysics, Geosystems, 2019, 20, 2462-2472.	2.5	11
15	Numerical Simulation of Unstable Preferential Flow during Water Infiltration into Heterogeneous Dry Soil. Water (Switzerland), 2020, 12, 909.	2.7	11
16	Effects of model resolution on optimal design of subsurface flow and transport problems. Advances in Water Resources, 2012, 38, 27-37.	3.8	7
17	Interplay between Fingering Instabilities and Initial Soil Moisture in Solute Transport through the Vadose Zone. Water (Switzerland), 2020, 12, 917.	2.7	5
18	Understanding the Impact of Boundary and Initial Condition Errors on the Solution to a Thermal Diffusivity Inverse Problem. SIAM Undergraduate Research Online, 0, 4, 156-174.	0.2	1

XIAOJING FU

#	Article	IF	CITATION
19	Some Lava Flows May Not Have Been as Thick as They Appear. Geophysical Research Letters, 2021, 48, .	4.0	1
20	Pattern formation and coarsening dynamics in three-dimensional convective mixing in porous media. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120355.	3.4	1
21	Experimental design of diffusion and desorption of contaminant in heterogeneous media. Water Science and Technology, 2011, 64, 988-998.	2.5	O
22	Parameter identification and sensitivity analysis to a thermal diffusivity inverse problem. Involve, 2015, 8, 385-400.	0.2	0