
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1014965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acquisition and analysis of scanning tunneling spectroscopy data—WSe2 monolayer. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	5
2	Unexplored MBE growth mode reveals new properties of superconducting NbN. Physical Review Materials, 2021, 5, .	2.4	10
3	Photophysics and Electronic Structure of Lateral Graphene/MoS ₂ and Metal/MoS ₂ Junctions. ACS Nano, 2020, 14, 16663-16671.	14.6	11
4	Flat Bands and Mechanical Deformation Effects in the Moiré Superlattice of MoS ₂ -WSe ₂ Heterobilayers. ACS Nano, 2020, 14, 7564-7573.	14.6	38
5	Proximity-induced superconducting gap in the quantum spin Hall edge state of monolayer WTe2. Nature Physics, 2020, 16, 526-530.	16.7	76
6	WSe ₂ homojunctions and quantum dots created by patterned hydrogenation of epitaxial graphene substrates. 2D Materials, 2019, 6, 021001.	4.4	7
7	Formation of graphene atop a Si adlayer on the C-face of SiC. Physical Review Materials, 2019, 3, .	2.4	3
8	One dimensional metallic edges in atomically thin WSe ₂ induced by air exposure. 2D Materials, 2018, 5, 025017.	4.4	47
9	Magnitude of the current in 2D interlayer tunneling devices. Journal of Physics Condensed Matter, 2018, 30, 055703.	1.8	2
10	Quantum-Confined Electronic States Arising from the Moiré Pattern of MoS ₂ –WSe ₂ Heterobilayers. Nano Letters, 2018, 18, 1849-1855.	9.1	91
11	Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors. ACS Nano, 2018, 12, 965-975.	14.6	172
12	Large scale 2D/3D hybrids based on gallium nitride and transition metal dichalcogenides. Nanoscale, 2018, 10, 336-341.	5.6	38
13	Substitutional mechanism for growth of hexagonal boron nitride on epitaxial graphene. Applied Physics Letters, 2018, 113, .	3.3	6
14	Characterization of hexagonal boron nitride layers on nickel surfaces by low-energy electron microscopy. Surface Science, 2017, 659, 31-42.	1.9	20
15	Carbon-assisted chemical vapor deposition of hexagonal boron nitride. 2D Materials, 2017, 4, 025117.	4.4	54
16	Epitaxial graphene homogeneity and quantum Hall effect in millimeter-scale devices. Carbon, 2017, 115, 229-236.	10.3	57
17	Characteristics of Interlayer Tunneling Field-Effect Transistors Computed by a "DFT-Bardeen―Method. Journal of Electronic Materials, 2017, 46, 1378-1389.	2.2	5
18	Properties of synthetic epitaxial graphene/molybdenum disulfide lateral heterostructures. Carbon, 2017, 125, 551-556.	10.3	27

#	Article	IF	CITATIONS
19	Growth and electronic properties of nanolines on TiO2-terminated SrTiO3(001) surfaces. Journal of Applied Physics, 2017, 122, 124305.	2.5	1
20	Thickness characterization of atomically thin WSe2 on epitaxial graphene by low-energy electron reflectivity oscillations. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	1.2	10
21	Formation of hexagonal boron nitride on graphene-covered copper surfaces. Journal of Materials Research, 2016, 31, 945-958.	2.6	17
22	Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures. Nanoscale, 2016, 8, 8947-8954.	5.6	21
23	Chemically selective formation of Si–O–Al on SiGe(110) and (001) for ALD nucleation using H2O2(g). Surface Science, 2016, 652, 322-333.	1.9	7
24	Scanning Tunneling Microscopy and Spectroscopy of Air Exposure Effects on Molecular Beam Epitaxy Grown WSe ₂ Monolayers and Bilayers. ACS Nano, 2016, 10, 4258-4267.	14.6	72
25	Oxygen vacancies on SrO-terminated <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>SrTi</mml:mi><mml:msub><mml: mathvariant="normal">O<mml:mn>3</mml:mn></mml: </mml:msub><mml:mrow><mml:mo>(</mml:mo><m studied by scanning tunneling spectroscopy. Physical Review B. 2015, 91</m </mml:mrow></mml:mrow></mml:math 	ni _{3.2} ıml:mn>0()1 2 7mml:mn
26	Theory of resonant tunneling in bilayer-graphene/hexagonal-boron-nitride heterostructures. Applied Physics Letters, 2015, 106, .	3.3	23
27	Comprehensive structural and optical characterization of MBE grown MoSe ₂ on graphite, CaF ₂ and graphene. 2D Materials, 2015, 2, 024007.	4.4	120
28	Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe ₂ . Nano Letters, 2015, 15, 6494-6500.	9.1	175
29	Electronic states of two-dimensional materials and heterostructures. , 2015, , .		0
30	Topographic and electronic structure of cleaved SrTiO3(001) surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	6
31	Inelastic effects in low-energy electron reflectivity of two-dimensional materials. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 02B105.	1.2	7
32	2.2.8 Ni, Nickel. , 2015, , 36-37.		0
33	2.3.2 AlN, Aluminum Nitride. , 2015, , 46-46.		0
34	2.3.15 SiC, Silicon Carbide. , 2015, , 65-66.		0
35	2.3.14 Si, Silicon. , 2015, , 62-64.		0
36	Energy Gap Induced by Friedel Oscillations Manifested as Transport Asymmetry at Monolayer-Bilayer Graphene Boundaries. Physical Review X, 2014, 4, .	8.9	39

#	Article	IF	CITATIONS
37	Formation of a Buffer Layer for Graphene on C-Face SiC{0001}. Journal of Electronic Materials, 2014, 43, 819-827.	2.2	4
38	Tunneling characteristics in chemical vapor deposited graphene–hexagonal boron nitride–graphene junctions. Applied Physics Letters, 2014, 104, .	3.3	49
39	Theory of graphene–insulator–graphene tunnel junctions. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, .	1.2	36
40	Hot carriers in epitaxial graphene sheets with and without hydrogen intercalation: role of substrate coupling. Nanoscale, 2014, 6, 10562-10568.	5.6	4
41	Spatially Resolved Mapping of Electrical Conductivity across Individual Domain (Grain) Boundaries in Graphene. ACS Nano, 2013, 7, 7956-7966.	14.6	124
42	Graphene Nucleation Density on Copper: Fundamental Role of Background Pressure. Journal of Physical Chemistry C, 2013, 117, 18919-18926.	3.1	179
43	Low-energy electron reflectivity of graphene on copper and other substrates. Physical Review B, 2013, 87, .	3.2	43
44	Low-energy electron reflectivity from graphene: First-principles computations and approximate models. Ultramicroscopy, 2013, 130, 101-108.	1.9	24
45	SymFET: A Proposed Symmetric Graphene Tunneling Field-Effect Transistor. IEEE Transactions on Electron Devices, 2013, 60, 951-957.	3.0	93
46	Atomic-Scale Mapping of Thermoelectric Power on Graphene: Role of Defects and Boundaries. Nano Letters, 2013, 13, 3269-3273.	9.1	52
47	Low-energy electron reflectivity from graphene. Physical Review B, 2013, 87, .	3.2	83
48	Formation of graphene on SiC(0001 \hat{A}^-) surfaces in disilane and neon environments. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 04E102.	1.2	2
49	Interface structure of graphene on SiC(000 <mml:math) (xi<br="" 0.784314="" 1="" 10="" 272="" 50="" etqq1="" overlock="" rgbt="" td="" tf="" tj="">Physical Review B. 2012, 85, .</mml:math)>	nlns:mml= 3.2	="http://www 27
50	Charge transfer between isomer domains on n+-doped Si(111)-2 × 1: energetic stabilization. Journal of Physics Condensed Matter, 2012, 24, 354009.	1.8	5
51	Single-particle tunneling in doped graphene-insulator-graphene junctions. Journal of Applied Physics, 2012, 111, .	2.5	144
52	Structure and electronic spectroscopy of steps on GaAs(110) surfaces. Surface Science, 2012, 606, 28-33.	1.9	17
53	Graphene formed on SiC under various environments: comparison of Si-face and C-face. Journal Physics D: Applied Physics, 2012, 45, 154001.	2.8	44
54	Evidences of electrochemical graphene functionalization and substrate dependence by Raman and scanning tunneling spectroscopies. Journal of Applied Physics, 2012, 111, 114306.	2.5	22

#	Article	IF	CITATIONS
55	Quantitative Determination of Nanoscale Electronic Properties of Semiconductor Surfaces by Scanning Tunnelling Spectroscopy. Journal of Physics: Conference Series, 2011, 326, 012009.	0.4	4
56	Coexistence of Negatively and Positively Buckled Isomers onn+-DopedSi(111)â^'2×1. Physical Review Letters, 2011, 106, 067601.	7.8	27
57	Formation of epitaxial graphene on SiC(0001) using vacuum or argon environments. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C5C1-C5C7.	1.2	26
58	Electronic states of InAs/GaAs quantum dots by scanning tunneling spectroscopy. Applied Physics Letters, 2010, 97, 123110.	3.3	11
59	Thickness monitoring of graphene on SiC using low-energy electron diffraction. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 958-962.	2.1	13
60	Size, shape, composition, and electronic properties of InAs/GaAs quantum dots by scanning tunneling microscopy and spectroscopy. Journal of Applied Physics, 2010, 108, 114315.	2.5	32
61	Ultrafast Transient Absorption Microscopy Studies of Carrier Dynamics in Epitaxial Graphene. Nano Letters, 2010, 10, 1308-1313.	9.1	164
62	Comparison of graphene formation on C-face and Si-face SiC {0001} surfaces. Physical Review B, 2010, 82, .	3.2	76
63	Gigahertz operation of epitaxial graphene transistors. , 2009, , .		0
64	Contrast mechanisms in cross-sectional scanning tunneling microscopy of GaSb/GaAs type-II nanostructures. Journal of Applied Physics, 2009, 105, .	2.5	14
65	Influence of surface states on tunneling spectra ofn-type GaAs(110) surfaces. Physical Review B, 2009, 80, .	3.2	37
66	Morphology of graphene on SiC(0001Â ⁻) surfaces. Applied Physics Letters, 2009, 95, 073101.	3.3	33
67	Temperature Dependence of Epitaxial Graphene Formation on SiC(0001). Journal of Electronic Materials, 2009, 38, 718-724.	2.2	35
68	The influence of the band structure of epitaxial graphene on SiC on the transistor characteristics. Solid State Communications, 2009, 149, 2194-2198.	1.9	8
69	A prospective: Quantitative scanning tunneling spectroscopy of semiconductor surfaces. Surface Science, 2009, 603, 2841-2844.	1.9	21
70	Tunneling spectroscopy of graphene and related reconstructions on SiC(0001). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 1052-1057.	2.1	21
71	Molecular dynamics and firstâ€principles computations of Ga adlayers on GaN(0001). Physica Status Solidi (B): Basic Research, 2008, 245, 920-923.	1.5	7
72	Step formation on hydrogen-etched 6H-SiC{0001} surfaces. Surface Science, 2008, 602, 2936-2942.	1.9	44

#	Article	IF	CITATIONS
73	Growth of nanoscale BaTiO ₃ /SrTiO ₃ superlattices by molecular-beam epitaxy. Journal of Materials Research, 2008, 23, 1417-1432.	2.6	49
74	Nucleation and Stochiometry Dependence of Rutile-TiO2(001)/GaN(0001) Thin Films Grown by Plasma-Assisted Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 2008, 1108, 1.	0.1	0
75	Electronic states of chemically treated SiC surfaces. Journal of Applied Physics, 2008, 103, 013709.	2.5	8
76	Band offsets of InGaPâ^•GaAs heterojunctions by scanning tunneling spectroscopy. Journal of Applied Physics, 2008, 103, 073704.	2.5	31
77	Influence of tip-induced band bending on tunnelling spectra of semiconductor surfaces. Nanotechnology, 2007, 18, 044015.	2.6	89
78	Field effect in epitaxial graphene on a silicon carbide substrate. Applied Physics Letters, 2007, 90, 253507.	3.3	132
79	A study of the morphology of GaN seed layers on in situ deposited SixNy and its effect on properties of overgrown GaN epilayers. Journal of Crystal Growth, 2006, 291, 301-308.	1.5	12
80	Band gap of theGe(111)c(2×8)surface by scanning tunneling spectroscopy. Physical Review B, 2006, 73, .	3.2	78
81	Electronic states of oxidized GaN(0001) surfaces. Applied Physics Letters, 2006, 89, 171920.	3.3	26
82	Oxidized GaN(0001) surfaces studied by scanning tunneling microscopy and spectroscopy and by first-principles theory. Journal of Vacuum Science & Technology B, 2006, 24, 2080.	1.3	43
83	Effects of hydrogen during molecular beam epitaxy of GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2183-2186.	0.8	2
84	Dislocation density reduction in GaN using porous SiN interlayers. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 722-726.	1.8	31
85	Recent developments in surface studies of GaN and AlN. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1174.	1.6	65
86	InGaAsâ^•InP quantum well intermixing studied by high-resolution x-ray diffraction and grazing incidence x-ray analysis. Journal of Applied Physics, 2005, 97, 093519.	2.5	3
87	Effects of hydrogen on the morphology and electrical properties of GaN grown by plasma-assisted molecular-beam epitaxy. Applied Physics Letters, 2005, 86, 121914.	3.3	11
88	Efficacy of single and double SiNx interlayers on defect reduction in GaN overlayers grown by organometallic vapor-phase epitaxy. Journal of Applied Physics, 2005, 98, 123502.	2.5	26
89	Low-temperature tunneling spectroscopy ofGe(111)c(2×8)surfaces. Physical Review B, 2005, 71, .	3.2	64
90	Transport limitations in tunneling spectroscopy ofGe(111)c(2×8)surfaces. Physical Review B, 2004, 69, .	3.2	30

#	Article	IF	CITATIONS
91	Cross-sectional scanning tunneling microscopy and spectroscopy of InGaP/GaAs heterojunctions. Applied Physics Letters, 2004, 84, 227-229.	3.3	19
92	Buckling of Si and Ge(111)2×1 surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1671-1674.	2.1	16
93	Growth of GaN on porous SiC and GaN substrates. Journal of Electronic Materials, 2003, 32, 855-860.	2.2	51
94	Low energy electron microscopy of indium on Si(001) surfaces. Surface Science, 2003, 547, 127-138.	1.9	8
95	Growth of GaN on porous SiC and GaN substrates. Physica Status Solidi A, 2003, 200, 44-47.	1.7	6
96	In-situ ellipsometry: Identification of surface terminations during GaN growth. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2938-2943.	0.8	4
97	Cross-sectional scanning tunneling microscopy studies of lattice-matched InGaAs/InP quantum wells: variations in growth switching sequence. Journal of Crystal Growth, 2003, 249, 437-444.	1.5	9
98	Reconstructions of the AlN(0001) surface. Physical Review B, 2003, 68, .	3.2	70
99	Adatom Kinetics On and Below the Surface: The Existence of a New Diffusion Channel. Physical Review Letters, 2003, 90, 056101.	7.8	293
100	Growth and Surface Reconstructions of AlN(0001) Films. Materials Research Society Symposia Proceedings, 2003, 798, 383.	0.1	0
101	Combined MOCVD and MBE growth of GaN on porous SiC. Materials Research Society Symposia Proceedings, 2003, 798, 760.	0.1	4
102	Morphology and surface reconstructions of GaN(11̄00) surfaces. Applied Physics Letters, 2003, 82, 1793-1795.	3.3	35
103	Surface termination during GaN growth by metalorganic vapor phase epitaxy determined by ellipsometry. Journal of Applied Physics, 2003, 94, 6997-6999.	2.5	17
104	Electrostatic potential for a hyperbolic probe tip near a semiconductor. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 2080.	1.6	123
105	Scanning tunneling microscopy images of III–V semiconductor alloys: Strain effects. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 18.	1.6	9
106	Plasma-assisted molecular beam epitaxy of GaN on porous SiC substrates with varying porosity. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1812.	1.6	25
107	Low-temperature scanning tunneling spectroscopy ofn-type GaAs(110) surfaces. Physical Review B, 2002, 66, .	3.2	50
108	Morphology and effects of hydrogen etching of porous SiC. Journal of Applied Physics, 2002, 92, 4070-4074.	2.5	45

#	Article	IF	CITATIONS
109	Scanning tunneling potentiometry of semiconductor junctions. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 1677.	1.6	21
110	Morphology and surface reconstructions of m-plane GaN. Materials Research Society Symposia Proceedings, 2002, 743, L4.1.1.	0.1	2
111	Structural Properties of GaN Films Grown by Molecular Beam Epitaxy on Singular and Vicinal 6H-SiC(0001). MRS Internet Journal of Nitride Semiconductor Research, 2002, 7, 1.	1.0	13
112	Review of Structure of Bare and Adsorbate-Covered GaN(0001) Surfaces. MRS Internet Journal of Nitride Semiconductor Research, 2002, 7, 1.	1.0	62
113	Growth of Gan on Porous Sic Substrates by Plasma-Assisted Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 2002, 722, 131.	0.1	18
114	Adsorption and incorporation of silicon at GaN(0001) surfaces. Applied Physics Letters, 2002, 80, 2008-2010.	3.3	57
115	Structural Properties of GaN films grown by Molecular Beam Epitaxy on vicinal SiC(0001). Materials Research Society Symposia Proceedings, 2001, 693, 471.	0.1	3
116	Indium incorporation and surface segregation during InGaN growth by molecular beam epitaxy: experiment and theory. MRS Internet Journal of Nitride Semiconductor Research, 2001, 6, 1.	1.0	46
117	Recent developments in scanning tunneling spectroscopy of semiconductor surfaces. Applied Physics A: Materials Science and Processing, 2001, 72, S193-S199.	2.3	7
118	Properties of GaN epitaxial layers grown on 6H-SiC(0001) by plasma-assisted molecular beam epitaxy. Journal of Electronic Materials, 2001, 30, 162-169.	2.2	34
119	Growth of GaN on SiC(0001) by Molecular Beam Epitaxy. Physica Status Solidi A, 2001, 188, 595-599.	1.7	10
120	Distribution of nitrogen atoms in dilute GaAsN and InGaAsN alloys studied by scanning tunneling microscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 1644.	1.6	23
121	Silicon on GaN(0001) and (0001Ì") surfaces. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 1619.	1.6	8
122	Arrangement of nitrogen atoms in GaAsN alloys determined by scanning tunneling microscopy. Applied Physics Letters, 2001, 78, 82-84.	3.3	44
123	Buckling and band gap of theGe(111)2×1surface studied by low-temperature scanning tunneling microscopy. Physical Review B, 2001, 64, .	3.2	25
124	Role of Ga flux in dislocation reduction in GaN films grown on SiC(0001). Applied Physics Letters, 2001, 79, 3428-3430.	3.3	59
125	InGaAs/InP quantum well intermixing studied by cross-sectional scanning tunneling microscopy. Journal of Applied Physics, 2001, 89, 4815-4823.	2.5	32
126	Structure of clean and arsenic-covered GaN(0001) surfaces. Journal of Crystal Growth, 2000, 209, 355-363.	1.5	47

#	Article	IF	CITATIONS
127	Reconstructions of GaN and InGaN surfaces. Applied Surface Science, 2000, 166, 165-172.	6.1	20
128	Surface activity of magnesium during GaN molecular beam epitaxial growth. MRS Internet Journal of Nitride Semiconductor Research, 2000, 5, 280-286.	1.0	2
129	SURFACE MORPHOLOGY OF GaN SURFACES DURING MOLECULAR BEAM EPITAXY. Surface Review and Letters, 2000, 07, 601-606.	1.1	17
130	Surface structures and growth kinetics of InGaN(0001) grown by molecular beam epitaxy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 2284.	1.6	72
131	Optimized structural properties of wurtzite GaN on SiC(0001) grown by molecular beam epitaxy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 1915-1918.	2.1	21
132	Comment on "Structures ofGaN(0001)f{â^'}(2×2),f{â^'}(4×4), andf{â^'}(5×5)Surface Reconstructionsâ€ Physical Review Letters, 2000, 84, 4014-4014.	- 7.8	16
133	Structure of GaN(0001): The laterally contracted Ga bilayer model. Physical Review B, 2000, 61, 9932-9935.	3.2	322
134	Spontaneous Formation of Indium-Rich Nanostructures on InGaN(0001) Surfaces. Physical Review Letters, 2000, 85, 1902-1905.	7.8	95
135	Indium incorporation and surface segregation during InGaN growth by molecular beam epitaxy. Materials Research Society Symposia Proceedings, 2000, 639, 261.	0.1	0
136	Surface Morphology of GaN Surfaces During Molecular Beam Epitaxy. Surface Review and Letters, 2000, 7, 601-606.	1.1	1
137	TEM Study of the Morphology Of GaN/SiC (0001) Grown at Various Temperatures by MBE. MRS Internet Journal of Nitride Semiconductor Research, 2000, 5, 238-244.	1.0	1
138	Scanning Tunneling Spectroscopy of Mott-Hubbard States on the 6H-SiC(0001) â^š3 ×â^š3 Surface. Physical Review Letters, 1999, 82, 1000-1003.	7.8	108
139	Compositional variations in strain-compensated InGaAsP/InAsP superlattices studied by scanning tunneling microscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 2251-2256.	2.1	5
140	Temperature dependence of molecular beam epitaxy of GaN on SiC (0001). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 1289-1293.	2.1	32
141	Tunneling spectroscopy of theSi(111)2×1surface. Physical Review B, 1999, 60, 4478-4480.	3.2	13
142	Inversion of wurtzite GaN(0001) by exposure to magnesium. Applied Physics Letters, 1999, 75, 808-810.	3.3	187
143	Comparison of electronic and mechanical contrast in scanning tunneling microscopy images of semiconductor heterojunctions. Physica B: Condensed Matter, 1999, 273-274, 796-802.	2.7	51
144	Enhanced group-V intermixing in InGaAs/InP quantum wells studied by cross-sectional scanning tunneling microscopy. Applied Physics Letters, 1999, 75, 79-81.	3.3	39

#	Article	IF	CITATIONS
145	GaN(0001) surface structures studied using scanning tunneling microscopy and first-principles total energy calculations. Surface Science, 1999, 423, 70-84.	1.9	118
146	Scanning tunneling microscopy and spectroscopy of arsenic antisites in low temperature grown InGaAs. Applied Physics Letters, 1999, 74, 1439-1441.	3.3	63
147	TEM Study of the Morphology Of GaN/SiC (0001) Grown at Various Temperatures by MBE. Materials Research Society Symposia Proceedings, 1999, 595, 1.	0.1	Ο
148	Surface Activity of Magnesium During GaN Molecular Beam Epitaxial Growth. Materials Research Society Symposia Proceedings, 1999, 595, 1.	0.1	1
149	Scanning Tunneling Microscopy Studies of InGaN Growth by Molecular Beam Epitaxy. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 858-863.	1.0	1
150	Scanning tunneling microscopy of the GaN(000 \$ar{1}\$]]) surface. Applied Physics A: Materials Science and Processing, 1998, 66, S947-S951.	2.3	30
151	In situ real-time studies of GaN growth on 6H–SiC(0001) by low-energy electron microscopy (LEEM). Journal of Crystal Growth, 1998, 189-190, 310-316.	1.5	19
152	The search for residual resistivity dipoles by scanning tunneling potentiometry. Superlattices and Microstructures, 1998, 23, 699-709.	3.1	11
153	Preparation of atomically flat surfaces on silicon carbide using hydrogen etching. Journal of Electronic Materials, 1998, 27, 308-312.	2.2	188
154	Surface-Influenced Phase Separation in Organic Thin Films on Drying. Langmuir, 1998, 14, 483-489.	3.5	5
155	Effects of GaAs substrate misorientation on strain relaxation in InxGa1â^'xAs films and multilayers. Journal of Applied Physics, 1998, 83, 5137-5149.	2.5	102
156	Reconstructions of GaN(0001) and (0001Ì") surfaces: Ga-rich metallic structures. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 2242.	1.6	228
157	Determination of wurtzite GaN lattice polarity based on surface reconstruction. Applied Physics Letters, 1998, 72, 2114-2116.	3.3	305
158	Strain variations in InGaAsP/InGaP superlattices studied by scanning probe microscopy. Applied Physics Letters, 1998, 72, 1727-1729.	3.3	31
159	A comparison of spectroscopic and microscopic observations of ion-induced intermixing in InGaAs/InP quantum wells. Applied Physics Letters, 1998, 72, 1599-1601.	3.3	12
160	Wurtzite GaN surface structures studied by scanning tunneling microscopy and reflection high energy electron diffraction. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 1641-1645.	2.1	91
161	Scanning Tunneling Microscopy Studies of InGaN Growth by Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	0
162	Selective Intermixing of Ion Irradiated Semiconductor Heterostructures. Materials Research Society Symposia Proceedings, 1998, 540, 15.	0.1	2

#	Article	IF	CITATIONS
163	Surface Reconstruction during Molecular Beam Epitaxial Growth of GaN (0001). MRS Internet Journal of Nitride Semiconductor Research, 1998, 3, 1.	1.0	60
164	Morphological and compositional variations in strain-compensated InGaAsP/InGaP superlattices. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 1027.	1.6	19
165	Scanning tunneling microscopy observation of surface reconstruction of GaN on sapphire and 6H-SiC. Materials Research Society Symposia Proceedings, 1997, 482, 428.	0.1	1
166	Reconstructions of the GaN(0001Â ⁻)Surface. Physical Review Letters, 1997, 79, 3934-3937.	7.8	331
167	Nanometer-scale studies of nitride/arsenide heterostructures produced by nitrogen plasma exposure of GaAs. Journal of Electronic Materials, 1997, 26, 1342-1348.	2.2	3
168	Atomicâ€scale structure and electronic properties of GaN/GaAs superlattices. Applied Physics Letters, 1996, 69, 3698-3700.	3.3	52
169	Phase Separation Kinetics During Drying. Materials Research Society Symposia Proceedings, 1996, 461, 93.	0.1	1
170	Correlation of buffer strain relaxation modes with transport properties of twoâ€dimensional electron gases. Journal of Applied Physics, 1996, 80, 6849-6854.	2.5	13
171	Unique xâ€ray diffraction pattern at grazing incidence from misfit dislocations in SiGe thin films. Journal of Applied Physics, 1996, 80, 89-96.	2.5	16
172	Local transport properties of thin bismuth films studied by scanning tunneling potentiometry. Physical Review B, 1996, 54, R5283-R5286.	3.2	42
173	Growth and transport properties of thin Bi films on InP(110). Semiconductor Science and Technology, 1996, 11, 1575-1581.	2.0	8
174	Addendum: â€`â€`Influence of misfit dislocations on the surface morphology of Si1â^'xGex films'' [Appl. Pl Lett. 66, 724 (1995)]. Applied Physics Letters, 1995, 67, 724-724.	hys. 3.3	3
175	Effect of interface composition and growth order on the mixed anion InAs/GaSb valence band offset. Applied Physics Letters, 1995, 66, 2981-2983.	3.3	20
176	Study of interface asymmetry in InAs–GaSb heterojunctions. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1995, 13, 1689.	1.6	47
177	Influence of misfit dislocations on the surface morphology of Si1â^'xGex films. Applied Physics Letters, 1995, 66, 724-726.	3.3	164
178	Scanning tunneling microscopy of in situ cleaved and hydrogen passivated Si(110) cross-sectional surfaces. Surface Science, 1995, 328, 215-226.	1.9	28
179	Roughness analysis of Si/SiGe heterostructures. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1995, 13, 1608.	1.6	54
180	Atomic force microscopy studies of SiGe films and Si/SiGe heterostructures. IBM Journal of Research and Development, 1995, 39, 629-637.	3.1	1

#	Article	IF	CITATIONS
181	Relaxed Si0.7Ge0.3 buffer layers for highâ€mobility devices. Applied Physics Letters, 1995, 67, 2373-2375.	3.3	80
182	Low-Temperature Grown III-V Materials. Annual Review of Materials Research, 1995, 25, 547-600.	5.5	113
183	Scattering from strain variations in highâ€mobility Si/SiGe heterostructures. Journal of Applied Physics, 1995, 78, 6091-6097.	2.5	62
184	Cross-sectional scanning tunnelling microscopy of III-V semiconductor structures. Semiconductor Science and Technology, 1994, 9, 2157-2168.	2.0	67
185	Scanning tunneling microscopy of InAs/GaSb superlattices: Subbands, interface roughness, and interface asymmetry. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1994, 12, 2592.	1.6	40
186	Scanning tunneling microscopy of InAs/GaSb superlattices with various growth conditions. Superlattices and Microstructures, 1994, 15, 215.	3.1	16
187	Interface roughness and asymmetry in InAs/GaSb superlattices studied by scanning tunneling microscopy. Physical Review Letters, 1994, 72, 2749-2752.	7.8	157
188	Scanning tunneling spectroscopy. Surface Science, 1994, 299-300, 965-979.	1.9	163
189	Tunneling spectroscopy of the (110) surface of direct-gap III-V semiconductors. Physical Review B, 1994, 50, 4561-4570.	3.2	377
190	Cross-Sectional Scanning Tunneling Microscopy of III-V Semiconductor Structures. Materials Research Society Symposia Proceedings, 1994, 332, 15.	0.1	2
191	Roughness Analysis of Si1-χGeχ Films. Materials Research Society Symposia Proceedings, 1994, 355, 301.	0.1	1
192	Solubility-limit activation of Si doping at MBE GaAs pn junctions observed by cross-sectional scanning tunneling microscopy. Journal of Crystal Growth, 1993, 127, 1030-1031.	1.5	0
193	Dynamics of the Ge(111)c(2 × 8) surface studied by scanning tunneling microscopy. Physica D: Nonlinear Phenomena, 1993, 66, 43-49.	2.8	9
194	Direct imaging of dopants in GaAs with crossâ€sectional scanning tunneling microscopy. Applied Physics Letters, 1993, 63, 2923-2925.	3.3	113
195	Different Fermi-level pinning behavior onn- andp-type GaAs(001). Physical Review B, 1993, 48, 4612-4615.	3.2	120
196	Carrier injection and scanning tunneling microscopy at the Si(111)â€2×1 surface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 792-796.	2.1	8
197	Tunneling spectroscopy of midgap states induced by arsenic precipitates in lowâ€ŧemperatureâ€grown GaAs. Applied Physics Letters, 1993, 63, 2528-2530.	3.3	40
198	Observation of bulk defects by scanning tunneling microscopy and spectroscopy: Arsenic antisite defects in GaAs. Physical Review Letters, 1993, 71, 1176-1179.	7.8	180

#	Article	IF	CITATIONS
199	Pinned and unpinned step dynamics on vicinal silver (110) surfaces. Physical Review B, 1993, 48, 8458-8461.	3.2	17
200	Cross-sectional scanning tunneling microscopy of epitaxial GaAs structures. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1993, 11, 1502.	1.6	26
201	Cross-Sectional Scanning Tunneling Microscopy of GaAs Doping Superlattices: Pinned vs. Unpinned Surfaces. , 1993, , 127-137.		2
202	Tunneling spectroscopy on compensating surface defects induced by Si doping of molecular-beam epitaxially grown GaAs(001). Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1992, 10, 1874.	1.6	88
203	Application of electron and ion beam analysis techniques to microelectronics. IBM Journal of Research and Development, 1992, 36, 183-207.	3.1	2
204	Crossâ€sectional imaging and spectroscopy of GaAs doping superlattices by scanning tunneling microscopy. Applied Physics Letters, 1992, 61, 795-797.	3.3	88
205	Formation of metal/GaAs(110) interfaces studied by scanning tunneling microscopy. Applied Surface Science, 1992, 56-58, 104-116.	6.1	23
206	Edge melting of the Ge(111) surface studied by scanning tunneling microscopy. Ultramicroscopy, 1992, 42-44, 33-40.	1.9	30
207	Kinetics of the Si(111)2 × 1→ 5 × 5 and 7 × 7 transformation studied by scanning tunneling microscopy. Surface Science, 1991, 243, 151-165.	1.9	69
208	Scanning tunneling microscopy and spectroscopy of cleaved and annealed Ge(111) surfaces. Surface Science, 1991, 251-252, 401-407.	1.9	51
209	Scanning tunneling microscopy and spectroscopy of Bi-Sr-Ca-Cu-O 2:2:1:2 high-temperature superconductors. Physical Review B, 1991, 43, 7913-7922.	3.2	72
210	Surface diffusion and phase transition on the Ge(111) surface studied by scanning tunneling microscopy. Physical Review Letters, 1991, 66, 3257-3260.	7.8	132
211	Scanning tunneling microscopy and spectroscopy of the Si(111)5×5 surface. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1991, 9, 716.	1.6	36
212	Band gap of the Ge(111)2×1 and Si(111)2×1 surfaces by scanning tunneling spectroscopy. Physical Review B, 1991, 44, 13791-13794.	3.2	68
213	Scanning tunneling microscopy and spectroscopy of thin metal films on the GaAs(110) surface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1990, 8, 3379-3385.	2.1	41
214	Formation of the 5×5 reconstruction on cleaved Si(111) surfaces studied by scanning tunneling microscopy. Physical Review B, 1990, 42, 5391-5394.	3.2	70
215	Scanning Tunneling Microscopy: Semiconductor Surfaces, Adsorption, and Epitaxy. , 1990, , 211-240.		13

Scanning Tunneling Microscopy. , 1990, , 357-379.

RANDALL FEENSTRA

#	Article	IF	CITATIONS
217	Electronic and structural properties of a discommensurate monolayer system: GaAs(110)-(1×1)Bi. Physical Review B, 1989, 39, 12925-12928.	3.2	61
218	Electronic states of metal atoms on the GaAs(110) surface studied by scanning tunneling microscopy. Physical Review Letters, 1989, 63, 1412-1415.	7.8	111
219	Scanning tunneling microscopy and first-principles theory of the Sn/GaAs(110) surface. Physical Review B, 1989, 40, 10044-10047.	3.2	18
220	Surface structural and electronic properties of cleaved single crystals ofBi2.15Sr1.7CaCu2O8+l´compounds: A scanning tunneling microscopy study. Physical Review B, 1989, 40, 2682-2685.	3.2	90
221	Scanning tunneling microscopy and spectroscopy of gold on the GaAs(110) surface. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1989, 7, 925.	1.6	64
222	Structural and electronic properties of Bi/GaAs(110). Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1989, 7, 936.	1.6	53
223	Structure of Cs on GaAs(110) as determined by scanning tunneling microscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 2868-2872.	2.1	83
224	Geometric and electronic structure of antimony on the GaAs(110) surface studied by scanning tunneling microscopy. Physical Review B, 1989, 39, 7744-7753.	3.2	234
225	Spectroscopy of Metal Adsorbates on the GaAs(110) Surface Studied with the Scanning Tunneling Microscope. Materials Research Society Symposia Proceedings, 1989, 139, 15.	0.1	4
226	Fermi-Level Pinning by Oxygen and Antimony Adsorbates on the GaAs(110) Surface by Scanning Tunneling Spectroscopy. NATO ASI Series Series B: Physics, 1989, , 307-314.	0.2	1
227	Asymmetries in dislocation densities, surface morphology, and strain of GalnAs/GaAs single heterolayers. Journal of Applied Physics, 1988, 64, 4843-4852.	2.5	208
228	Fermi-Level Pinning at the Sb/GaAs(110) Surface Studied by Scanning Tunneling Spectroscopy. Physical Review Letters, 1988, 61, 447-450.	7.8	202
229	Voltageâ€dependent scanning tunneling microscopy imaging of semiconductor surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 499-507.	2.1	107
230	Scanning tunneling spectroscopy of oxygen adsorbates on the GaAs(110) surface. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1988, 6, 1472.	1.6	55
231	Summary Abstract: Reconstruction of steps on the Si(111)2×1 surface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 801-802.	2.1	3
232	Summary Abstract: Imaging oxygen acceptor states on the GaAs(110) surface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 577-578.	2.1	8
233	Summary Abstract: Structure analysis of the GaAs(110) surface by scanning tunneling microscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 497-498.	2.1	9
234	Studies of superconductors using a lowâ€ŧemperature, highâ€field scanning tunneling microscope. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 259-262.	2.1	36

RANDALL FEENSTRA

#	Article	IF	CITATIONS
235	Voltageâ€dependent imaging of antimony on the GaAs(110) surface. Journal of Microscopy, 1988, 152, 761-769.	1.8	14
236	Spectroscopy of Metal Adsorbates on the GaAs(110) Surface Studied with the Scanning Tunneling Microscope. Materials Research Society Symposia Proceedings, 1988, 138, 305.	0.1	5
237	Voltage-dependent scanning tunneling microscopy imaging of semiconductor surfaces. Perspectives in Condensed Matter Physics, 1988, , 101-109.	0.1	Ο
238	Fermi-Level Pinning at the Sb/GaAs(110) Surface Studied by Scanning Tunneling Spectroscopy. Perspectives in Condensed Matter Physics, 1988, , 137-140.	0.1	0
239	Tunneling spectroscopy of the GaAs(110) surface. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1987, 5, 923.	1.6	395
240	Spatial variation of the observed energy gap in granular superconducting NbN films. Applied Physics Letters, 1987, 50, 1607-1609.	3.3	36
241	Scanning tunneling microscope for low temperature, high magnetic field, and spatially resolved spectroscopy. Review of Scientific Instruments, 1987, 58, 1806-1810.	1.3	65
242	Structure of oxygen adsorbed on the GaAs(110) surface studied using scanning tunneling microscopy. Physical Review B, 1987, 36, 7718-7721.	3.2	34
243	Local state density and long-range screening of adsorbed oxygen atoms on the GaAs(110) surface. Physical Review Letters, 1987, 58, 1668-1671.	7.8	201
244	Reconstruction of steps on the Si(111)2×1 surface. Physical Review Letters, 1987, 59, 2173-2176.	7.8	91
245	Atom-selective imaging of the GaAs(110) surface. Physical Review Letters, 1987, 58, 1192-1195.	7.8	596
246	Real-Space Determination of Surface Structure by Scanning Tunneling Microscopy. Physica Scripta, 1987, T19A, 55-60.	2.5	18
247	Tunneling spectroscopy of the Si(111)2 × 1 surface. Surface Science, 1987, 181, 295-306.	1.9	606
248	Imaging electronic surface states in real space on the Si(111) 2×1 surface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 838-841.	2.1	58
249	Spatial Variation of Superconducting Gap: STM Measurements for NbN. Japanese Journal of Applied Physics, 1987, 26, 817.	1.5	1
250	Scanning tunneling microscopy of cleaved semiconductor surfaces. IBM Journal of Research and Development, 1986, 30, 466-471.	3.1	9
251	Electronic Structure of the Si(111)2 × 1 Surface by Scanning-Tunneling Microscopy. Physical Review Letters, 1986, 57, 2579-2582.	7.8	597
252	Real-space observation ofï€-bonded chains and surface disorder on Si(111)2×1. Physical Review Letters, 1986, 56, 608-611.	7.8	269

#	Article	IF	CITATIONS
253	Scanning tunneling microscopy studies of Si(111)â€2×1 surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1986, 4, 1315-1319.	2.1	32
254	Surface morphology of GaAs(110) by scanning tunneling microscopy. Physical Review B, 1985, 32, 1394-1396.	3.2	85
255	Electron-hole exchange transitions at defects in semiconduc- tors. Physical Review B, 1985, 31, 4083-4085.	3.2	7
256	Surface morphology of oxidized and ionâ€etched silicon by scanning tunneling microscopy. Applied Physics Letters, 1985, 47, 97-99.	3.3	97
257	Vibrational modes of oxygen in GaP including second-nearest-neighbor interactions. Physical Review B, 1984, 29, 1858-1869.	3.2	12
258	Dissociation of (Zn,O) pairs in GaP. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1983, 117-118, 149-151.	0.9	1
259	Isotope shifts for the P, Q, R lines in indium-doped silicon. Solid State Communications, 1983, 46, 321-324.	1.9	19
260	Vibrational modes of oxygen in GaP including nearest-neighbor interactions. Physical Review B, 1983, 28, 5793-5801.	3.2	21
261	Periodicity in the undulation spectra of GaP: N. Physical Review B, 1982, 26, 430-431.	3.2	1
262	Reaction kinetics in GaP:(Zn,O). Physical Review B, 1982, 25, 6329-6337.	3.2	8
263	Defect Reactions in GaP: (Zn,O). Physical Review Letters, 1981, 47, 925-927.	7.8	17
264	Exciton capture cross sections of indium and boron impurities in silicon. Solid State Communications, 1980, 36, 1039-1045.	1.9	19
265	Modification of CdSe resistivity by laser annealing. Journal of Applied Physics, 1979, 50, 5624-5629.	2.5	11
266	Preparation and Properties of Porous GaN Fabricated by Metal-Assisted Electroless Etching. , 0, , 77-99.		2
267	GaN Lateral Epitaxy Growth Using Porous SiNx, TiNx and SiC. , 0, , 121-170.		0
268	Nanoporous SiC as a Semi-Permeable Biomembrane for Medical Use: Practical and Theoretical Considerations. , 0, , 291-310.		0
269	Growth of SiC on Porous SiC Buffer Layers. , 0, , 55-75.		0