Katsuhiro Ohuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10149641/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells. Tissue Engineering, 2005, 11, 1658-1666.	4.9	477
2	Mechanical Damage of Red Blood Cells by Rotary Blood Pumps: Selective Destruction of Aged Red Blood Cells and Subhemolytic Trauma. Artificial Organs, 2008, 32, 785-791.	1.0	64
3	Deformability of Red Blood Cells and Its Relation to Blood Trauma in Rotary Blood Pumps. Artificial Organs, 2007, 31, 352-358.	1.0	44
4	Computational Fluid Dynamics Analysis of the Pediatric Tiny Centrifugal Blood Pump (TinyPump). Artificial Organs, 2006, 30, 392-399.	1.0	35
5	Mechanical circulatory support devices (MCSD) in Japan: current status and future directions. Journal of Artificial Organs, 2005, 8, 13-27.	0.4	34
6	Magnetically Suspended Centrifugal Blood Pump With a Radial Magnetic Driver. ASAIO Journal, 2005, 51, 60-64.	0.9	29
7	A dynamic action potential model analysis of shock-induced aftereffects in ventricular muscle by reversible breakdown of cell membrane. IEEE Transactions on Biomedical Engineering, 2002, 49, 18-30.	2.5	25
8	Feasibility of a Miniature Centrifugal Rotary Blood Pump for Low-Flow Circulation in Children and Infants. ASAIO Journal, 2005, 51, 557-562.	0.9	22
9	Disposable Magnetically Levitated Centrifugal Blood Pump: Design and In Vitro Performance. Artificial Organs, 2005, 29, 520-526.	1.0	21
10	Deformability of human red blood cells exposed to a uniform shear stress as measured by a cyclically reversing shear flow generator. Physiological Measurement, 2007, 28, 531-545.	1.2	21
11	One Piece Ultracompact Totally Implantable Electromechanical Total Artificial Heart for Permanent Use. ASAIO Journal, 2002, 48, 538-545.	0.9	18
12	Segmented polyurethane modified by photopolymerization and cross-linking with 2-methacryloyloxyethyl phosphorylcholine polymer for blood-contacting surfaces of ventricular assist devices. Journal of Artificial Organs, 2005, 8, 237-244.	0.4	16
13	Hemolytic Performance of a MagLev Disposable Rotary Blood Pump (MedTech Dispo): Effects of MagLev Gap Clearance and Surface Roughness. Artificial Organs, 2006, 30, 949-954.	1.0	16
14	Feasibility of a Tiny Centrifugal Blood Pump (TinyPump) for Pediatric Extracorporeal Circulatory Support. Artificial Organs, 2007, 31, 408-412.	1.0	16
15	Optical Dynamic Analysis of Thrombus Inside a Centrifugal Blood Pump During Extracorporeal Mechanical Circulatory Support in a Porcine Model. Artificial Organs, 2017, 41, 893-903.	1.0	14
16	Efficacy of a Miniature Centrifugal Rotary Pump (TinyPump) for Transfusion-Free Cardiopulmonary Bypass in Neonatal Piglets. ASAIO Journal, 2007, 53, 675-679.	0.9	11
17	Development of a real-time and quantitative thrombus sensor for an extracorporeal centrifugal blood pump by near-infrared light. Biomedical Optics Express, 2018, 9, 190.	1.5	10
18	Feasibility of a TinyPump System for Pediatric CPB, ECMO, and Circulatory Assistance: Hydrodynamic Performances of the Modified Pump Housing for Implantable TinyPump. ASAIO Journal. 2007. 53. 742-746.	0.9	7

Катѕиніго Онисні

#	Article	IF	CITATIONS
19	Transfusion-Free Neonatal Cardiopulmonary Bypass Using a TinyPump. Annals of Thoracic Surgery, 2010, 90, 1615-1621.	0.7	5
20	Currently available ventricular-assist devices: capabilities, limitations and future perspectives. Expert Review of Medical Devices, 2006, 3, 195-205.	1.4	4
21	The Re-design at the Transformer Portion of Transcutaneous Energy Transmission System for All Implantable Devices. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 1035-8.	0.5	4
22	Evaluation of realâ€ŧime thrombus detection method in a magnetically levitated centrifugal blood pump using a porcine left ventricular assist circulation model. Artificial Organs, 2021, 45, 726-735.	1.0	4
23	Novel application of indocyanine green fluorescence imaging for realâ€time detection of thrombus in a membrane oxygenator. Artificial Organs, 2021, 45, 1173-1182.	1.0	4
24	Lung thermography during the initial reperfusion period to assess pulmonary function in cellular ex vivo lung perfusion. Artificial Organs, 2022, 46, 1522-1532.	1.0	3
25	Optical oxygen saturation imaging in cellular ex vivo lung perfusion to assess lobular pulmonary function. Biomedical Optics Express, 2022, 13, 328.	1.5	3
26	Analysis of the relationship between left ventricular pressure and motor current for evaluation of native cardiac function during left ventricular support with a centrifugal blood pump. Journal of Artificial Organs, 2001, 4, 269-272.	0.4	2
27	Surgical energy device using steam jet for robotic assisted surgery. , 2015, 2015, 6872-5.		2
28	Development of a Novel Heart Positioner for Minimally Invasive Coronary Surgery. Annals of Thoracic Surgery, 2020, 110, 1746-1750.	0.7	1
29	907 Development of Totally Implantable Electromechanical Ventricular Assist Device. The Proceedings of Ibaraki District Conference, 2000, 2000, 253-254.	0.0	0
30	705 Development of an Implantable Electromechanical Ventricular Assist System. The Proceedings of Ibaraki District Conference, 2001, 2001, 175-176.	0.0	0
31	Development of A Totally Implantable Electro-Mechanical Left Ventricular Assist Device. The Proceedings of Ibaraki District Conference, 2002, 2002, 187-188.	0.0	Ο
32	Totally Implantable Permanent Artificial Hearts for End-Stage Cardiac Patients. The Proceedings of Conference of Kanto Branch, 2003, 2003.9, 99-100.	0.0	0
33	A model analysis of electrophysiological modulation by cardiac mechano-electric feedback. Journal of Life Support Engineering, 2007, 19, 106-106.	0.1	Ο
34	Development of real-time and quantitative monitoring of thrombus formation in an extracorporeal centrifugal blood pump. , 2018, , .		0
35	Intelligent maglev system and its medical application. The Proceedings of the Symposium on the Motion and Vibration Control, 2019, 2019.16, B302.	0.0	0
36	Clarification of Internal Flow Characteristics of an Axial Flow Blood Pump with Eccentric Drive. The Proceedings of the Fluids Engineering Conference, 2019, 2019, IS-41.	0.0	0

#	Article	IF	CITATIONS
37	Design of Mixed Flow Blood Pump as Infant Use by Numerical Analysis of Internal Flow. The Proceedings of Ibaraki District Conference, 2020, 2020.28, 508.	0.0	0
38	Measurement of Internal Flow of an Axial Flow Blood Pump with Eccentric Drive by Using PIV and Estimation of Thrombus Formation Area in the Flow. The Proceedings of Ibaraki District Conference, 2020, 2020.28, 507.	0.0	0
39	Monitoring of biological information with magnetic bearing in blood pump and its application for treatment. The Proceedings of the Dynamics & Design Conference, 2021, 2021, 542.	0.0	0