Alexandr Dolganov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1014795/publications.pdf

Version: 2024-02-01

1040056 888059 27 294 9 17 g-index citations h-index papers 27 27 27 345 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrocatalytic Activity of 4,4'-Bipyridine in the Production of Molecular Hydrogen in the Presence of Acids of Different Nature. Russian Journal of Physical Chemistry A, 2022, 96, 958-963.	0.6	4
2	Synergetic Effect during the Electrocatalytic Reaction of Hydrogen Production in the Presence of 2.2'-Bipyridine. Russian Journal of Physical Chemistry A, 2022, 96, 954-957.	0.6	7
3	Synthesis and Electrochemical Properties of 2,5-Disubstituted Derivatives of 1,4-Bis(4,5-diphenylidimidazol-2-yl)benzene. Russian Journal of General Chemistry, 2020, 90, 961-967.	0.8	1
4	Photocatalytic Systems Based on Acridine Salts Derivatives. Russian Journal of General Chemistry, 2020, 90, 1229-1234.	0.8	4
5	Electrochemical, Spectroscopic, and Quantum Chemical Study of Electrocatalytic Hydrogen Evolution in the Presence of N-Methyl-9-phenylacridinium Iodide. Russian Journal of Organic Chemistry, 2019, 55, 938-943.	0.8	4
6	Electrochemical Properties of N-Methyl- and N-Phenyl-2,4,6-Triphenylpyridium Perchlorate. Russian Journal of Electrochemistry, 2019, 55, 807-812.	0.9	5
7	Triarylpyridinium salts: Synthesis and electrochemical properties. Journal of Physical Organic Chemistry, 2019, 32, e3930.	1.9	9
8	Iron(II) clathrochelates as electrocatalysts of hydrogen evolution reaction at low pH. International Journal of Hydrogen Energy, 2017, 42, 27084-27093.	7.1	16
9	Metal-free Electrocatalyst for Hydrogen Production from Water. International Journal of Electrochemical Science, 2016, 11, 9559-9565.	1.3	13
10	Multiparameter molecular sensor based on a compound containing tetrathiafulvalenium, thiophene and pyridine fragments. Mendeleev Communications, 2016, 26, 202-204.	1.6	2
11	10-methyl-9-phenylacridinium iodide and 2,4,6-triphenylpyrylium perchlorate as catalysts for reduction of aromatic ketones. Russian Journal of Organic Chemistry, 2015, 51, 445-446.	0.8	O
12	Synthesis of chromophoric crown-containing styryl derivative of terthiophene and its complexation with octane-1,8-diaminium diperchlorate. Russian Journal of Organic Chemistry, 2014, 50, 552-558.	0.8	5
13	Redox-induced reversible transformation of a system quinone-dianion based on $2,23$ e²-(anthracene-9,10-diylidene)bis(4,5-diphenyl-2H-imidazole). Russian Journal of Organic Chemistry, 2013, 49, 739-742.	0.8	1
14	Formation of the second superhydrophobic shell around an encapsulated metal ion: synthesis, X-ray structure and electrochemical study of the clathrochelate and bis-clathrochelate iron(<scp>ii</scp>) and cobalt(<scp>ii</scp> , <scp>iii</scp>) dioximates with ribbed perfluoroarylsulfide substituents. Dalton Transactions, 2012, 41, 737-746.	3.3	40
15	Synthesis, structure, properties and immobilization on a gold surface of the monoribbed-functionalized tris-dioximate cobalt(ii) clathrochelates and an electrocatalytic hydrogen production from H+ ions. Dalton Transactions, 2012, 41, 6078.	3.3	58
16	First example of the ribbed-functionalized iron(ii) clathrochelate with six pendante closo-borate substituents. Russian Chemical Bulletin, 2011, 60, 2518-2521.	1.5	11
17	Antioxidant activity assay of 2,6-di-tert-butylphenols with phosphonate groups using cyclic voltammetry. Doklady Chemistry, 2011, 436, 31-33.	0.9	11
18	Copper(i) complexes with polymeric $2,2\hat{a}\in^2$ -biquinoline-containing ligands as electrocatalysts for selective oxidation of the secondary hydroxy group in $3,24$ -dihydroxy- $5\hat{l}^2$ -cholane with oxygen. Russian Journal of Organic Chemistry, 2011, 47, 62-65.	0.8	3

#	Article	IF	CITATIONS
19	Free radicals: XXVIII. Reaction of 2,4,6-triphenylpyranyl with (diacetoxy-λ3-iodanyl)benzene. Russian Journal of Organic Chemistry, 2011, 47, 442-445.	0.8	1
20	Synthesis of radicals underlain by 1,3-bis(4,5-diphenylimidazol-2-yl)benzene. Russian Journal of Organic Chemistry, 2011, 47, 1723-1726.	0.8	1
21	Electrochemical method in determination of antioxidative activity using ferrocene derivatives as examples. Russian Chemical Bulletin, 2011, 60, 647-655.	1.5	14
22	Spectroscopic and electrochemical study of dinuclear and mononuclear copper complexes with the bidentate ligand of the 2,2′-diquinoline series. Russian Chemical Bulletin, 2010, 59, 724-732.	1.5	4
23	Synthesis, structural characterization and in vitro cytotoxicity of new Au(III) and Au(I) complexes with thioamides. Dalton Transactions, 2009, , 10446.	3.3	52
24	Cul complexes with $2,2\hat{a}\in^2$ -biquinolyl-containing polymeric ligands as electrocatalysts for the oxidative coupling of alkynes in the presence of dioxygen. Russian Chemical Bulletin, 2008, 57, 2090-2092.	1.5	1
25	Influence of ligands' peripheral substituents on the structure, magnetochemical and electrochemical behaviour of complexes containing a Cu2O2 butterfly core. Inorganica Chimica Acta, 2008, 361, 2032-2044.	2.4	19
26	Electrochemical synthesis of Cu-containing polyheteroarylenes and study of their catalytic properties. Russian Journal of Electrochemistry, 2007, 43, 1133-1143.	0.9	4
27	Electrochemical and quantum chemical investigation of the CuI and CuII complexes with biquinolyl monomer and polymer ligands. Russian Chemical Bulletin, 2007, 56, 1380-1389.	1.5	4