Atsuo Fukuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1014403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>Sm</mml:mi><mml:msubsup><mn , <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Sm</mml:mi><mml:msup><mml:mrow><mml:mi>Sm</mml:mi><mml:msup><mml:mrow><mml:mi>Sm</mml:mi><mml:msup><mml:mrow><mml:mi>Sm</mml:mi><mml:msup><mml:mrow><mml:mi>Sm</mml:mi><mml:msup><mml:mrow><mml:msup><mml:mrow><mml:msup><mml:msup><mml:mrow><mml:msup><mml:msup><mml:mrow><mml:msup><mml:msup><mml:mrow><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup><mml:msup< td=""><td>nl:mi>C0.8 i>C<td>nml:mi> < m 2 l:mi> < mmla</td></td></mml:msup<></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:msup></mml:mrow></mml:msup></mml:msup></mml:mrow></mml:msup></mml:msup></mml:mrow></mml:msup></mml:msup></mml:mrow></mml:msup></mml:mrow></mml:msup></mml:mrow></mml:msup></mml:mrow></mml:msup></mml:mrow></mml:msup></mml:mrow></mml:msup></mml:mrow></mml:math </mn </mml:msubsup></mml:mrow>	nl:mi>C0.8 i>C <td>nml:mi> < m 2 l:mi> < mmla</td>	nml:mi> < m 2 l:mi> < mmla
2	Dielectric study of a subphase stabilized in an exceptionally wide temperature range by a delicate balance of interlayer interactions and thermal fluctuations. Physical Review E, 2020, 102, 012703.	0.8	2
3	Unexpected electric-field-induced antiferroelectric liquid crystal phase in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Sm</mml:mi><mml:msubsup><mn temperature range and the discrete flexoelectric effect. Physical Review E, 2019, 100, 010701.</mn </mml:msubsup></mml:mrow></mml:math 	า เ_{ดาซ่>C}	m anl:mi> <m< td=""></m<>
4	Electric-field-induced transition from SmA to ferroelectric SmC* in MC881, where antiferroelectric SmCA* but not SmC* emerges just below SmA. Molecular Crystals and Liquid Crystals, 2019, 682, 1-7.	0.4	1
5	Topological defects in smectic islands formed in antiferroelectric freestanding nanofilms. Surface Innovations, 2019, 7, 168-173.	1.4	2
6	Resonant x-ray scattering observation of transitional subphases during the electric-field-induced phase transition in a mixture of Se-containing chiral smectic liquid crystals. Physical Review E, 2018, 97, 062702.	0.8	3
7	Orientational action of edge dislocations on the director field in antiferroelectric smectic-CA*films. Physical Review E, 2017, 95, 012711.	0.8	4
8	Definite existence of subphases with eight- and ten-layer unit cells as studied by complementary methods, electric-field-induced birefringence and microbeam resonant x-ray scattering. Physical Review E, 2017, 96, 012701.	0.8	11
9	Two-dimensional hexagonal smectic structure formed by topological defects. Physical Review E, 2016, 93, 032704.	0.8	7
10	Effective long-range interlayer interactions and electric-field-induced subphases in ferrielectric liquid crystals. Physical Review E, 2016, 93, 042707.	0.8	8
11	Transitional subphases near the electric-field-induced phase transition to the ferroelectric phase in Se-containing chiral smectic liquid crystals observed by resonant x-ray scattering. Physical Review E, 2016, 94, 052703.	0.8	7
12	What Are ThresholdLess AntiFerroelectric (TLAF) LCs?–Disordered SmC [*] -Like Phase with q _T = 1/2 in a Wide Temperature Range. Molecular Crystals and Liquid Crystals, 2015, 610, 1-22.	0.4	7
13	Degeneracy lifting due to thermal fluctuations around the frustration point between anticlinic antiferroelectric SmCA*and synclinic ferroelectric SmC*. Physical Review E, 2013, 87, 012502.	0.8	12
14	Superlattice structures observed in the extraordinary phase sequence and analyzed by the phenomenological Landau model and the partially molecular model. Physical Review E, 2013, 87, 062506.	0.8	12
15	Discovery of a novel ferrielectric phase of five-layer periodicity in binary mixtures of chiral smectic liquid crystals exhibiting unusual reversed phase sequence. Liquid Crystals, 2011, 38, 663-668.	0.9	28
16	<i>Fin de Siècle</i> Competition, Nematic Active or Smectic Passive, and Resulting Unimaginable Antiferroelectricity and Ferrielectricity —LCs in My Memory—. Molecular Crystals and Liquid Crystals, 2011, 546, 171/[1641]-185/[1655].	0.4	0
17	X-ray diffraction study of ferroelectric and antiferroelectric liquid crystal mixtures exhibiting de VriesSmAâ^—-SmCâ^—transitions. Physical Review E, 2010, 81, 050701.	0.8	7
18	Antiferroelectric and ferroelectric orderings in frustrated chiral tilted smectics and a continuous change from anticlinic SmC A * to synclinic SmC *. Europhysics Letters, 2010, 90, 56005.	0.7	12

#	Article	IF	CITATIONS
19	Orientational order of a ferroelectric liquid crystal with small layer contraction. Physical Review E, 2010, 82, 031702.	0.8	11
20	Realization of Field Sequential Color in Simple Matrix Antiferroelectric Liquid Crystal Displays by Utilizing Fast Pretransitional Response. Applied Physics Express, 2009, 2, 071403.	1.1	3
21	Degeneracy lifting near the frustration points due to long-range interlayer interaction forces and the resulting varieties of polar chiral tilted smectic phases. Liquid Crystals, 2009, 36, 1101-1118.	0.9	29
22	Evolution of Subphases in a Prototype Binary Mixture System as Observed by Electric-Field-Induced Birefringence and Helical Pitch. Molecular Crystals and Liquid Crystals, 2009, 511, 36/[1506]-49/[1519].	0.4	9
23	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" > < mml:mrow > < mml:msup > < mml:mi > A < /mml:mi > < mml:mo > â^— < /mml:mo > < /mml:msup > < /mml:r exhibiting transitions to smectic - < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" Gradual "http://www.w3.org/1998/Math/MathML"	nrow>0.8	ıml:math>ph
24	xmlns:mml="http://www.w3.org/1998/Math/Math/ML".998/Ma. Physical Review E, 2008, 77, 041707 display="inline"> <mml:msup><mml:mi>C</mml:mi><mml:mo>*</mml:mo></mml:msup> and smectic- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msubsup><mml:mi>C</mml:mi><mml:mi>A</mml:mi><mml:mi><mml:mi></mml:mi><mml:mi><mml:mi></mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml< td=""><td>0.8</td><td>21 ml·math.pha</td></mml<></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:msubsup></mml:math>	0.8	21 ml·math.pha
25	and the thresholdless antiferroelectricity. Physical Review E, 2008, 78, 041702. Dynamic Mechanism of the Ferroelectric to Antiferroelectric Phase Transition in Chiral Smectic Liquid Crystals. Physical Review Letters, 2008, 101, 097801.	2.9	14
26	Solitary wave propagation in antiferroelectric liquid crystal cells and the quadrupolar term in the interlayer interaction. Physical Review E, 2007, 76, 011708.	0.8	16
27	Sign reversals in the dielectric anisotropy as functions of temperature and frequency in SmA* phase. Applied Physics Letters, 2007, 91, .	1.5	3
28	Temperature-induced sign reversal of biaxiality observed by conoscopy in some ferroelectricSmâ^'C*liquid crystals. Physical Review E, 2007, 76, 011709.	0.8	12
29	Theory of the intermediate tilted smectic phases and their helical rotation. Physical Review E, 2006, 74, 011705.	0.8	39
30	Experimental demonstration, using polarized Raman and infrared spectroscopy, that both conventional and de Vries smectic-Aphases may exist in smectic liquid crystals with a first-orderAâ^²C*transition. Physical Review E, 2006, 74, 051706.	0.8	31
31	Back to the future: 30 years in challenging smectic liquid crystal displays and in clarifying scientific wonders. Liquid Crystals, 2006, 33, 1339-1349.	0.9	2
32	Study of the SmCα* Phase in the Tokyo Mixture by Conoscopy Using Tilted Cell. Ferroelectrics, 2006, 344, 41-47.	0.3	6
33	Discrete flexoelectric polarizations and biaxial subphases with periodicities other than three and four layers in chiral smectic liquid crystals frustrated between ferroelectricity and antiferroelectricity. Physical Review E, 2005, 72, 041705.	0.8	47
34	Two kinds of smectic-Cα*subphases in a liquid crystal and their relative stability dependent on the enantiomeric excess as elucidated by electric-field-induced birefringence experiment. Physical Review E, 2005, 71, 021711.	0.8	44
35	Evidence for de Vries structure in a smectic-Aliquid crystal observed by polarized Raman scattering. Physical Review E, 2005, 71, 041705.	0.8	36
36	2πandπwalls in antiferroelectric smectic-CA*and smectic-Cfree-standing films. Physical Review E, 2004. 70. 041708.	0.8	11

#	Article	IF	CITATIONS
37	Molecular Structure of a Partly Deuterated Chiral Smectic Liquid Crystal Studied by Polarized FTIR Spectroscopy. Ferroelectrics, 2004, 311, 97-109.	0.3	3
38	Hayashiet al.Reply:. Physical Review Letters, 2003, 91, .	2.9	1
39	Intrinsic aspect of V-shaped switching in ferroelectric liquid crystals: Biaxial anchoring arising from peculiar short axis biasing in the molecular rotation around the long axis. Physical Review E, 2003, 68, 011702.	0.8	11
40	Fluctuation Forces Stabilizing Two Kinds of Staircases in Chiral Tilted Fluid Smectics Frustrated between Ferro- and Antiferro-Electricity. Molecular Crystals and Liquid Crystals, 2003, 398, 169-187.	0.4	10
41	SYNCLINIC AND ANTICLINIC ORDERING IN FRUSTRATED SMECTICS. Molecular Crystals and Liquid Crystals, 2003, 402, 9-30.	0.4	19
42	Structural transitions in thin free-standing films of an antiferroelectric liquid crystal exhibiting the smectic-Cα*phase in the bulk sample. Physical Review E, 2002, 65, 031702.	0.8	15
43	Orientational distributions in smectic liquid crystals showing V-shaped switching investigated by polarized Raman scattering. Physical Review E, 2002, 65, 041714.	0.8	19
44	Molecular Ordering Deformation Induced by Externally Applied Electric Field in an Antiferroelectric Liquid Crystal. Japanese Journal of Applied Physics, 2002, 41, 5292-5297.	0.8	3
45	AC Calorimetric Investigations of Heat Anomaly in Frustoelectric Liquid Crystals. Molecular Crystals and Liquid Crystals, 2001, 364, 335-345.	0.3	1
46	A Frustrated Ferroelectric SmC* Phase Characterized by Peculiar Conoscopic Melatopes and Responsible for the V-Shaped Switching in Liquid Crystals. Japanese Journal of Applied Physics, 2001, 40, L817-L819.	0.8	4
47	ALIGNMENT INSTABILITY INDUCED BY IRRADIATION OF VISIBLE LIGHT IN FRUSTOELECTRIC LIQUID CRYSTALLINE CELLS SHOWING THE V-SHAPED SWITCHING. Molecular Crystals and Liquid Crystals, 2001, 366, 785-795.	0.3	Ο
48	Probable Langevin-Like Director Reorientation in an Interface-Induced DisorderedSmC*-Like State of Liquid Crystals Characterized by Frustration between Ferro- and Antiferroelectricity. Physical Review Letters, 2001, 87, 015701.	2.9	13
49	V-shaped switching due to frustoelectricity in antiferroelectric liquid crystals. Ferroelectrics, 2000, 246, 1-20.	0.3	22
50	Critical Heat Anomaly in Frustoelectric Liquid Crystals. Molecular Crystals and Liquid Crystals, 2000, 346, 97-106.	0.3	0
51	Molecular model for the anticlinic smectic-CAphase. Physical Review E, 2000, 62, 3724-3735.	0.8	63
52	A Bent and Asymmetrically Hindered Chiral Alkyl Chain in Smectic-A Phase of an Antiferroelectric Liquid Crystal as Observed by2H-NMR. Journal of the Physical Society of Japan, 1999, 68, 9-11.	0.7	26
53	Molecular Rotation in an Antiferroelectric Liquid Crystal Studied by13C-Nuclear Magnetic Resonance Spin-Lattice Relaxation Time Measurement. Japanese Journal of Applied Physics, 1999, 38, 147-150.	0.8	24
54	Relationship between Flexoelectricity and Helical Pitch in Ferroelectric Liquid Crystal Mixtures Containing Host Achiral Compounds and Chiral Dopants. Japanese Journal of Applied Physics, 1999, 38, L580-L582.	0.8	2

#	Article	IF	CITATIONS
55	Molecular Orientational Structures with Macroscopic Helix in Antiferroelectric Liquid Crystal Subphases. Japanese Journal of Applied Physics, 1999, 38, 4832-4837.	0.8	74
56	Structure of Needlelike Defect in Homogeneously Aligned Cells of a Ferroelectric Liquid Crystal Mixture Studied Using X-Ray Microbeam. Japanese Journal of Applied Physics, 1999, 38, 4132-4135.	0.8	8
57	Target Response Times of Liquid Crystal Displays Estimated by Analyzing the Front and Rear Part Gray Levels of Moving Square Patterns. Japanese Journal of Applied Physics, 1999, 38, L646-L648.	0.8	16
58	Frustration between Ferroelectricity and Antiferroelectricity in Extremely Soft Chiral Smectic-C Like Phases of Liquid Crystals. Molecular Crystals and Liquid Crystals, 1999, 328, 1-12.	0.3	3
59	Chirality Dependence of Molecular Alignment under a High Magnetic Field in an Antiferroelectric Liquid Crystal MHPOBC. Molecular Crystals and Liquid Crystals, 1999, 330, 441-447.	0.3	1
60	A novel property caused by frustration between ferroelectricity and antiferroelectricity and its application to liquid crystal displays-frustoelectricity and V-shaped switching. Journal of Materials Chemistry, 1999, 9, 2051-2080.	6.7	129
61	High-Resolution13C NMR Study of an Antiferroelectric Liquid Crystal:Â Verification of the Bent Chain Structure. Journal of Physical Chemistry B, 1999, 103, 406-416.	1.2	34
62	Photocarrier generation in directly synthesized trans-polyacetylene. Synthetic Metals, 1998, 94, 255-260.	2.1	2
63	Stability of antiferroelectricity and molecular reorientation in the hexatic smectic IA* phase as studied by X-ray diffraction and NMR spectroscopy. Journal of Materials Chemistry, 1998, 8, 1133-1138.	6.7	9
64	Langevin Type Alignment in a Smectic Liquid Crystal Mixture Showing V-Shaped Switching As Studied by Optical Second-Harmonic Generation. Japanese Journal of Applied Physics, 1998, 37, L691-L693.	0.8	35
65	Devil' Staircase and Frustoelectricity in Chiral Smectic-C like Liquid Crystals. Liquid Crystals Today, 1998, 8, 6-8.	2.3	9
66	Evolution of Switching Characteristics from Tristable to V-Shaped in an Apparently Antiferroelectric Liquid Crystal. Japanese Journal of Applied Physics, 1997, 36, 3586-3590.	0.8	56
67	2AgExciton State below1BuExciton State in Trans-Polyacetylene Observed by Second-Harmonic-Generation Spectroscopy. Japanese Journal of Applied Physics, 1997, 36, 1099-1104.	0.8	10
68	Helicoid-Stabilized Tristable Switching in Ferroelectric Liquid Crystal Mixtures with Ultrashort Pitch. Japanese Journal of Applied Physics, 1997, 36, L784-L787.	0.8	17
69	Sign inversion of liquid-crystal-induced circular dichroism observed in the smectic-Aand chiral smectic-Cαphases of binary mixture systems. Physical Review E, 1997, 56, R43-R46.	0.8	23
70	Relaxation time of molecular rotation about its long axis in the smectic-A phase of ferroelectricand antiferroelectric liquid crystals as observed by picosecond optical Kerr effect. Physical Review E, 1997, 55, 1632-1636.	0.8	11
71	Synthesis of Mhpobc- <i>d</i> ₃ and Mhpobc-d ₄₃ and Behavior of Methyl Group Attached to Chiral Carbon as Observed by FT-IR, Raman and NMR Spectroscopy. Molecular Crystals and Liquid Crystals, 1997, 303, 291-296.	0.3	4
72	Orientational Change of the Trifluoromethyl Group at the Ferroelectric-Antiferroeletric Transition Observed by NMR Spectroscopy. Molecular Crystals and Liquid Crystals, 1997, 301, 203-208.	0.3	3

#	Article	IF	CITATIONS
73	Synthesis of Tfmhpncbc with Deuterated Achiral Chain and Study of Extremely Bent Chiral Chain in Antiferroelectric Smectic-IA*. Molecular Crystals and Liquid Crystals, 1997, 303, 285-290.	0.3	5
74	Devil's staircase between antiferroelectric SCA* and ferroelectric SC* phases in liquid crystals observed in free-standing films under temperature gradients. Journal of Materials Chemistry, 1997, 7, 407-416.	6.7	48
75	Electric quadrupole second-harmonic generation spectra in epitaxial vanadyl and titanyl phthalocyanine films grown by molecular-beam epitaxy. Journal of Chemical Physics, 1997, 107, 1687-1691.	1.2	23
76	Surface second-harmonic generation from two interfaces of polyimide film coated on a substrate. Applied Physics Letters, 1997, 71, 2274-2276.	1.5	14
77	Polyquinoxaline as an electron injecting material for electroluminescent device. Synthetic Metals, 1997, 85, 1195-1196.	2.1	53
78	Photocarrier-transporting kinetics in poly(2,3-di(p-tolyl)quinoxaline-5,8-diyl). Synthetic Metals, 1996, 79, 149-153.	2.1	7
79	Absolute Orientation of Pendant Chromophores Attached to the Polymer Backbone in Monolayers at Interfaces Studied by Phase Measurement of Second-Harmonic Generation. Langmuir, 1996, 12, 580-583.	1.6	18
80	Stability of the antiferroelectric phase in dimeric liquid crystals having two chiral centres with CF3 or CH3 groups; evaluation of conformational and electric interactions. Journal of Materials Chemistry, 1996, 6, 753.	6.7	29
81	Thresholdless antiferroelectricity in liquid crystals and its application to displays. Journal of Materials Chemistry, 1996, 6, 671.	6.7	210
82	Etching and restoration of molecular layers in organic metals by means of scanning tunneling microscopy. Thin Solid Films, 1996, 273, 267-271.	0.8	0
83	Surface structure and orientation of polyamic acid alkylamine salt Langmuir-Blodgett films having an azobenzene pendant unit. Thin Solid Films, 1996, 273, 254-257.	0.8	8
84	Thick single crystalline vanadyl phthalocyanine film epitaxially grown on KBr crystal by molecular beam epitaxy. Journal of Crystal Growth, 1996, 160, 279-282.	0.7	12
85	Non-Landau critical behavior of heat capacity at the smectic-A–smectic-Cα*transition of the antiferroelectric liquid crystal methylheptyloxycarbonylphenyl octyloxycarbonylbiphenyl carboxylate. Physical Review E, 1996, 54, 4450-4453.	0.8	9
86	Polyquinoxaline as an excellent electron injecting material for electroluminescent device. Applied Physics Letters, 1996, 68, 2346-2348.	1.5	73
87	Orientational relationship among polyimide alignment layer, liquid crystal monolayer, and bulk pretilt angle. Applied Physics Letters, 1996, 69, 164-166.	1.5	25
88	Obliquely projecting chiral alkyl chains and their precession around the long core axes in the smectic-Aphase of an antiferroelectric liquid crystal. Physical Review E, 1996, 53, R4295-R4298.	0.8	65
89	Resonant enhancement of second-harmonic generation of electric quadrupole origin in phthalocyanine films. Physical Review B, 1996, 53, R13314-R13317.	1.1	37
90	Anisotropic second-harmonic generation of electric quadrupolar origin in copper phthalocyanine films epitaxially grown by molecular-beam epitaxy. Physical Review B, 1996, 53, 12663-12665.	1.1	16

#	Article	IF	CITATIONS
91	Surface Orientation of Cyanobiphenyl Liquid Crystal Monolayer and Pretilt Angle under Various Rubbing Strengths. Japanese Journal of Applied Physics, 1996, 35, 2275-2279.	0.8	21
92	Spontaneous Layer Twist in a Stripe Texture of Chiral Ferroelectric Smectics Observed by Synchrotron X-Ray Microdiffraction. Japanese Journal of Applied Physics, 1996, 35, 683-687.	0.8	18
93	Grating Polarizing Beam-Splitter Using Oriented Polydiacetylene Thin Film. Japanese Journal of Applied Physics, 1996, 35, 508-509.	0.8	3
94	Orientation of Vanadyl Phthalocyanine Grown by Molecular Beam Epitaxy on KBr-KCl Mixed Crystals with Various Lattice Constants. Japanese Journal of Applied Physics, 1996, 35, L1120-L1123.	0.8	11
95	Orientation of Liquid Crystal Molecules on Side-Chain Polyimide Alignment Layer Studied by Second-Harmonic Generation Interferometry. Japanese Journal of Applied Physics, 1996, 35, 3971-3974.	0.8	9
96	Observation of the Electric-Dipole-Forbidden States in Polydiacetylene by Means of Resonance Second-Harmonic Generation Spectroscopy. Japanese Journal of Applied Physics, 1996, 35, L832-L834.	0.8	8
97	Molecular Fluctuations in Smectic Phases Possessing Antiferroelectric Ordering. Japanese Journal of Applied Physics, 1996, 35, 6157-6161.	0.8	9
98	Photoinduced Destruction of Polar Structure in Dye-Pendant Polymers Studied by Second-Harmonic Generation. Japanese Journal of Applied Physics, 1996, 35, 168-174.	0.8	16
99	Determination of Optical Constants of Polyquinoxalines as Electroluminescent Materials. Japanese Journal of Applied Physics, 1996, 35, 761-764.	0.8	3
100	Observation of Molecular Layers in (2-(4,5-bis(thiomethyl)-1,3-dithiol-2-ylidene)-5-) Tj ETQq0 0 0 rgBT /Overlock of Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 1996, 35, 234-241.	10 Tf 50 3 0.8	887 Td ((4,5-et 10
101	Spontaneous polarization parallel to the tilt plane in the antiferroelectric chiral smectic-CAphase of liquid crystals as observed by polarized infrared spectroscopy. Physical Review E, 1995, 52, R2153-R2156.	0.8	103
102	Higher smectic-layer order parameters in liquid crystals determined by x-ray diffraction and the effect of antiferroelectricity. Physical Review E, 1995, 51, 400-406.	0.8	64
103	Orientation of alkyl chains and hindered rotation of carbonyl groups in the smectic-C*phase of antiferroelectric liquid crystals studied by polarized Fourier transform infrared spectroscopy. Physical Review E, 1995, 51, 2166-2175.	0.8	116
104	Second-harmonic generation in centrosymmetric molecular films: Analysis under anisotropic conditions. Physical Review B, 1995, 52, 12355-12365.	1.1	45
105	Binary mass diffusion in smectic C and C ^A phases as observed by forced Rayleigh scattering. Liquid Crystals, 1995, 18, 639-643.	0.9	17
106	Modified Crystal Rotation Method for Measuring High Pretilt Angle in Liquid Crystal Cells. Japanese Journal of Applied Physics, 1995, 34, 4905-4906.	0.8	20
107	Accuracy of Nematic Visco-Elastic Constant Measurement Using Rayleigh Scattered Light. Japanese Journal of Applied Physics, 1995, 34, 5694-5699.	0.8	1
108	Origin of Second-Harmonic Generation in Vacuum-Evaporated Copper Phthalocyanine Film. Japanese Journal of Applied Physics, 1995, 34, L299-L302.	0.8	14

#	Article	IF	CITATIONS
109	Surface Orientation of Polyimide Alignment Layer Studied by Optical Second-Harmonic Generation. Japanese Journal of Applied Physics, 1995, 34, L316-L319.	0.8	27
110	The Importance of the Electric Interaction for Stabilizing the Antiferroelectric Smectic Liquid-Crystalline Phase. Japanese Journal of Applied Physics, 1995, 34, L830-L832.	0.8	7
111	Photoconductive properties of poly(2,3-di(p-tolyl)quinoxaline-5,8-diyl). Synthetic Metals, 1995, 74, 43-48.	2.1	10
112	Ir and Raman studies in three polyanilines with different oxidation level. Synthetic Metals, 1995, 69, 175-176.	2.1	87
113	In-Situ Observation of SHG and its Origin in Vacuum Deposited Copper Phthalocyanine Film. Molecular Crystals and Liquid Crystals, 1995, 267, 1-6.	0.3	9
114	Circular dichroism in ferroelectric and antiferroelectric liquid crystals. Liquid Crystals, 1995, 18, 239-250.	0.9	29
115	Phase transitions and conformational changes in an antiferroelectric liquid crystal 4-(1-methylheptyloxycarbonyl)phenyl 4′-octyloxybiphenyl-4-carboxylate (MHPOBC). Liquid Crystals, 1994, 16, 185-202.	0.9	34
116	Application of Antiferroelectric Liquid Crystals for Display and Photoaddressed Spatial Light Modulator. Molecular Crystals and Liquid Crystals, 1994, 255, 253-259.	0.3	2
117	Thickness Dependence of the Epitaxial Structure of Vanadyl Phthalocyanine Film. Japanese Journal of Applied Physics, 1994, 33, L1555-L1558.	0.8	32
118	Direct Synthesis of Trans Polyacetylene Films with Conjugated System of Long Average Length and Narrow Distribution. Japanese Journal of Applied Physics, 1994, 33, L953-L956.	0.8	7
119	Molecular Orientation and Switching Behavior in Antiferroelectric Liquid Crystals Studied by Polarized Raman Scattering. Japanese Journal of Applied Physics, 1994, 33, 5850-5859.	0.8	31
120	Various orientations of pendant dye attached to polyamic acid Langmuir and Langmuir-Blodgett films studied by an optical second-harmonic generation interferometry technique. Thin Solid Films, 1994, 244, 754-757.	0.8	6
121	Unusual crystal orientation and its control in 4-(N, N-dimethylamino)-3-acetamidonitrobenzene (DAN) in glass capillary. Journal of Crystal Growth, 1994, 143, 66-70.	0.7	3
122	Antiferroelectric chiral smectic liquid crystals. Journal of Materials Chemistry, 1994, 4, 997.	6.7	624
123	Devil's staircase and racemization in antiferroelectric liquid crystals. Journal of Materials Chemistry, 1994, 4, 237.	6.7	37
124	Imidization Process in a Dye-Labeled Poly(amic Acid) Langmuir-Blodgett Film Studied by Optical Second-Harmonic Generation. Langmuir, 1994, 10, 1160-1163.	1.6	9
125	Novel Orientation of Azobenzene Pendant Group in Hybrid Monolayers Composed of Polyimide Langmuir-Blodgett Film and Alkyl Polysiloxane Self-Assembled Monolayer. Langmuir, 1994, 10, 4599-4605.	1.6	10
126	Selective dissociation of merocyanine J-aggregates with linearly polarized laser light studied by optical second harmonic generation. Thin Solid Films, 1993, 226, 173-177.	0.8	3

#	Article	IF	CITATIONS
127	Devil's staircase formed by competing interactions stabilizing the ferroelectric smectic-C*phase and the antiferroelectric smectic-CA*phase in liquid crystalline binary mixtures. Physical Review B, 1993, 48, 13439-13450.	1.1	129
128	Dielectric relaxation modes in the antiferroelectric smectic CA* phase. Ferroelectrics, 1993, 147, 13-25.	0.3	117
129	Organic Thin Films Studied by Surface Second-Harmonic Generation. Molecular Crystals and Liquid Crystals, 1993, 227, 93-112.	0.3	6
130	Photochemical Control of Switching Behaviors of Ferroelectric Polymer Liquid Crystals: Poly(2-methylbutyl 4′-(10-acryloyloxydecyloxy)-biphenyl-4-carboxylate). Molecular Crystals and Liquid Crystals, 1993, 225, 67-79.	0.3	8
131	Anisotropy of Dye Diffusion in Smectic Phases Studied by Forced Rayleigh Scattering. Molecular Crystals and Liquid Crystals, 1993, 231, 153-161.	0.3	8
132	Does the disclination line exist in a homogeneously aligned SmCa* cell?. Ferroelectrics, 1993, 149, 61-68.	0.3	9
133	Combined defect of 2ï€ wedge disclination and ï€ dispiration in the anticlinic molecular orientation. Ferroelectrics, 1993, 149, 133-138.	0.3	5
134	Subphases in antiferroelectric liquid crystalline binary mixtures with infinite helical pitch or zero spontaneous polarization. Ferroelectrics, 1993, 147, 121-134.	0.3	17
135	Second-Harmonic Generation in Antiferroelectric Liquid Crystal. Japanese Journal of Applied Physics, 1993, 32, 4589-4593.	0.8	7
136	Molecular Orientation of Poly(2,2′;-Bipyridine-5,5′-Diyl) Film Prepared by Vacuum Deposition on the Glass Substrate as Determined with SHG Technique. Molecular Crystals and Liquid Crystals, 1993, 226, 207-212.	0.3	0
137	Tristable Switching in SmO*of 1-Methylheptyl-Terephthalidene-Bis-Aminocinnamate (MHTAC) and Its Miscibility with SmCA*of Antiferroelectric Chiral Smectic Liquid Crystal. Japanese Journal of Applied Physics, 1993, 32, 4605-4610.	0.8	13
138	Construction of Dynamic Conoscope Observation System Using CCD Camera and Image Processor. Japanese Journal of Applied Physics, 1993, 32, 985-988.	0.8	27
139	Study on Molecular Dimerization Inducing the Antiferroelectric Liquid Crystalline Phase by Measuring the Smectic Layer Thickness in Various Compounds. Japanese Journal of Applied Physics, 1993, 32, L97-L100.	0.8	41
140	Optically Addressed Spatial Light Modulator Using an Antiferroelectric Liquid Crystal Doped with Azobenzene. Japanese Journal of Applied Physics, 1993, 32, L589-L592.	0.8	27
141	Photoisomerization Observed by Means of Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 1993, 32, L936-L939.	0.8	8
142	Hexatic antiferroelectric Sml _A [*] phase in MHPOCBC. Ferroelectrics, 1993, 147, 135-146.	0.3	18
143	Second harmonic generation in disperseâ€redâ€labeled poly(methyl methacrylate) Langmuir–Blodgett film. Applied Physics Letters, 1993, 62, 2161-2163.	1.5	13
144	Gray scale recording by optically addressed spatial light modulator using antiferroelectric liquid crystal. Ferroelectrics, 1993, 149, 273-281.	0.3	4

#	Article	IF	CITATIONS
145	Fluctuations in the ferrielectric smectic-Cl̂ ^{3*} phase as observed by laser beam diffraction and photon correlation spectroscopy. Ferroelectrics, 1993, 147, 147-157.	0.3	27
146	<title>X-ray analysis on ferroelectric and antiferroelectric liquid crystals</title> . , 1993, , .		2
147	Cell Thickness Effects in the Determination of Elastic Constant Ratios by Observing Rayleigh Light Scattered Intensity. Japanese Journal of Applied Physics, 1992, 31, 329-335.	0.8	1
148	Mirrorless Microcavity Spontaneously Formed in Ferroelectric Liquid Crystals. Japanese Journal of Applied Physics, 1992, 31, L679-L681.	0.8	33
149	Excitonic Excited States and Optical Spectra in Poly(p-Phenylenevinylene) Prepared by Carefully Controlled Thermal Elimination Reaction. Japanese Journal of Applied Physics, 1992, 31, 67-71.	0.8	11
150	Dielectric Behavior and the Devil's Staircase in the SmCα*Phase of an Antiferroelectric Liquid Crystal, 4-(1-methylheptyloxycarbonyl)phenyl 4′-octylcarbonyloxybiphenyl-4-carboxylate. Japanese Journal of Applied Physics, 1992, 31, 3394-3398.	0.8	37
151	Luminescence and Multiphonon Raman Scattering Excited at Exciton-Forming Vibronic Absorption Subbands in Trans-Polyacetylene. Japanese Journal of Applied Physics, 1992, 31, L102-L105.	0.8	3
152	Investigations of Soft-Mode and Electroclinic Response in a Ferroelectric Liquid Crystal withPsâ‰^5 mC/m2. Japanese Journal of Applied Physics, 1992, 31, 1409-1413.	0.8	28
153	Blurring and Broadening of Reflection Spectra Due to Structural and Alignment Changes of Conjugated Chains Caused by Isomerization and Stretching in Trans-Polyacetylene. Japanese Journal of Applied Physics, 1992, 31, 3372-3376.	0.8	8
154	Poling Dynamics and Negligible Relaxation in Aromatic Polyurea Studied byIn SituObservation of Second-Harmonic Generation. Japanese Journal of Applied Physics, 1992, 31, L553-L555.	0.8	13
155	Control of Organic-Crystal Orientation in Glass Capillary by Modified Bridgman-Stockbarger Method. Japanese Journal of Applied Physics, 1992, 31, L710-L712.	0.8	3
156	Reentrant Antiferroelectric Phase in 4-(1-Methylheptyloxycarbonyl) phenyl 4'-Octylbiphenyl-4-Carboxylate. Japanese Journal of Applied Physics, 1992, 31, L793-L796.	0.8	62
157	Second-Harmonic Generation in Poly(vinylidene fluoride) Films Prepared by Vapor Deposition under an Electric Field. Japanese Journal of Applied Physics, 1992, 31, L1195-L1197.	0.8	24
158	Observation of Photochromic Reactions in Spiropyran Monolayers by Surface Potential Measurement. Japanese Journal of Applied Physics, 1992, 31, 1160-1163.	0.8	5
159	Competition between Ferroelectric and Antiferroelectric Interactions Stabilizing Varieties of Phases in Binary Mixtures of Smectic Liquid Crystals. Japanese Journal of Applied Physics, 1992, 31, L1435-L1438.	0.8	100
160	Visual observation of dispirations in liquid crystals. Physical Review B, 1992, 45, 7684-7689.	1.1	84
161	Conoscopic study of the Scαâ^— phase and the Devil's staircase in an antiferroelectric liquid crystal. Liquid Crystals, 1992, 12, 59-70.	0.9	80
162	Simple method for confirming the antiferroelectric structure of smectic liquid crystals. Journal of Materials Chemistry, 1992, 2, 71.	6.7	84

#	Article	IF	CITATIONS
163	Surface Symmetry in Organic Thin Films Studied by Optical Second-Harmonic Generation. Molecular Crystals and Liquid Crystals, 1992, 217, 89-94.	0.3	2
164	Disperse Red-labeled poly(methyl methacrylate) monolayer at interfaces studied by second-harmonic generation and surface potential. Langmuir, 1992, 8, 2764-2770.	1.6	13
165	Symmetry and orientational structure in hemicyanine monolayer by surface second harmonic generation and absorption spectroscopy. Thin Solid Films, 1992, 210-211, 699-701.	0.8	6
166	Optical second-harmonic generation in poled polyurea prepared by vapor deposition polymerization. , 1992, , 213-218.		0
167	Symmetry and Second-Order Susceptibility of Hemicyanine Monolayer Studied by Surface Second-Harmonic Generation. Japanese Journal of Applied Physics, 1991, 30, 1050-1062.	0.8	49
168	Noncentrosymmetric Structure of Merocyanine J-Aggregate Assembly Studied by Second-Harmonic Generation. Japanese Journal of Applied Physics, 1991, 30, L1525-L1528.	0.8	28
169	Influence of the Optical Purity on the Smectic Layer Thickness and the Transition Order in Enantiomeric Mixtures of an Antiferroelectric Liquid Crystal. Japanese Journal of Applied Physics, 1991, 30, L1032-L1035.	0.8	18
170	Electric-Field-Induced Apparent Tilt Angle and Devil's Staircase in SmCα*of an Antiferroelectric Chiral Smectic Liquid Crystal. Japanese Journal of Applied Physics, 1991, 30, L1819-L1822.	0.8	118
171	Influence of Compression Processes on the Formation of H-Aggregates in Hemicyanine Monolayer on Water Surface. Japanese Journal of Applied Physics, 1991, 30, 362-365.	0.8	11
172	Self-Recovery from Alignment Damage under AC Fields in Antiferroelectric and Ferroelectric Liquid Crystal Cells. Japanese Journal of Applied Physics, 1991, 30, 735-740.	0.8	42
173	Stability of Antiferroelectricity and Causes for its Appearance in SmCα*and SmCA*Phases of a Chiral Smectic Liquid Crystal, MHPOBC. Japanese Journal of Applied Physics, 1991, 30, 2023-2027.	0.8	237
174	Second-Harmonic Generation in Noncentrosymmetric p-Nitroaniline Spontaneously Crystallized by Quenching from Lyotropic Liquid Crystalline Poly(γ-benzyl-L-glutamate). Japanese Journal of Applied Physics, 1991, 30, 1710-1714.	0.8	10
175	Photocurrent Excitation Spectra Observed with Au-Al Heteroelectrodes Biased Reversely and Reflection Spectra in Trans-Polyacetylene. Japanese Journal of Applied Physics, 1991, 30, L500-L503.	0.8	7
176	Exciton-Forming Vibronic Optical Subbands and Their Inhomogeneous Broadening in Trans-Polyacetylene. Japanese Journal of Applied Physics, 1991, 30, L1562-L1565.	0.8	6
177	Optical Second Harmonic Generation from Poled Thin Films of Aromatic Polyurea Prepared by Vapor Deposition Polymerization. Japanese Journal of Applied Physics, 1991, 30, L1737-L1740.	0.8	24
178	Spontaneous Formation of Quasi-Book-shelf Layer Structure in New Ferroelectric Liquid Crystals Derived from a Naphthalene Ring. Molecular Crystals and Liquid Crystals, 1991, 199, 111-118.	0.7	16
179	On the appearance of the antiferroelectric phase. Ferroelectrics, 1991, 122, 167-176.	0.3	36
180	Layer structure deformation and electro-optic response in electroclinic effect. Ferroelectrics, 1991, 114, 123-130.	0.3	12

#	Article	IF	CITATIONS
181	Dielectric Studies on Antiferroelectric Liquid Crystals. Molecular Crystals and Liquid Crystals, 1991, 199, 197-205.	0.7	33
182	Antiferroelectric phase and tristable-switching in MHPOBC. Ferroelectrics, 1991, 114, 187-197.	0.3	83
183	Novel Temperature Dependences of Helical Pitch in Ferroelectric and Antiferroelectric Chiral Smectic Liquid Crystals. Japanese Journal of Applied Physics, 1991, 30, 532-536.	0.8	100
184	Temporal and Spatial Behavior of the Field-Induced Transition between Antiferroelectric and Ferroelectric Phases in Chiral Smectics. Japanese Journal of Applied Physics, 1990, 29, L107-L110.	0.8	108
185	First Order Paraelectric-Antiferroelectric Phase Transition in a Chiral Smectic Liquid Crystal of a Fluorine Containing Phenyl Pyrimidine Derivative. Japanese Journal of Applied Physics, 1990, 29, L987-L990.	0.8	66
186	Observation of Three Subphases in Smectic C*of MHPOBC by Dielectric Measurements. Japanese Journal of Applied Physics, 1990, 29, L103-L106.	0.8	127
187	Electric-Field-Induced Transitions among Antiferroelectric, Ferrielectric and Ferroelectric Phases in a Chiral Smectic MHPOBC. Japanese Journal of Applied Physics, 1990, 29, L1473-L1476.	0.8	75
188	Molecular Orientational Structures in Ferroelectric, Ferrielectric and Antiferroelectric Smectic Liquid Crystal Phases as Studied by Conoscope Observation. Japanese Journal of Applied Physics, 1990, 29, 131-137.	0.8	239
189	Temperature Dependence of Molecular Orientation and Hyperpolarizability in Hemicyanine LB Films Studied by Second-Harmonic Generation. Japanese Journal of Applied Physics, 1990, 29, 913-917.	0.8	23
190	Correspondence between Smectic Layer Switching and DC Hysteresis of Apparent Tilt Angle in an Antiferroelectric Liquid Crystal Mixture. Japanese Journal of Applied Physics, 1990, 29, L111-L114.	0.8	39
191	Molecular Orientation in Mixed Monolayers of Hemicyanine and Fatty Acid at an Air/Water Interface Studied by Second Harmonic Generation. Japanese Journal of Applied Physics, 1990, 29, 750-755.	0.8	35
192	Frequency-Dependent Switching Behavior under Triangular Waves in Antiferroelectric and Ferrielectric Chiral Smectic Phases. Japanese Journal of Applied Physics, 1990, 29, 1122-1127.	0.8	120
193	Antiferroelectric Chiral Smectic Phases Responsible for the Trislable Switching in MHPOBC. Japanese Journal of Applied Physics, 1989, 28, L1265-L1268.	0.8	697
194	Novel Phases Exhibiting Tristable Switching. Japanese Journal of Applied Physics, 1989, 28, L1261-L1264.	0.8	411
195	Chevron Layer Structure and Parabolic Focal Conics in Smectic A Liquid Crystals. Japanese Journal of Applied Physics, 1989, 28, 2547-2551.	0.8	45
196	Invited Lecture. Complexities in the structure of ferroelectric liquid crystal cells The chevron structure and twisted states. Liquid Crystals, 1989, 5, 1055-1073.	0.9	59
197	High Quality Ferroelectric Liquid Crystal Display with Quasi-Bookshelf Layer Structure. Japanese Journal of Applied Physics, 1989, 28, L483-L486.	0.8	84
198	Polyacetylene Film with Fibrils Aligned across the Thickness Synthesized with a Liquid Crystalline Catalyst under Magnetic Field. Japanese Journal of Applied Physics, 1989, 28, L1473-L1475.	0.8	6

#	Article	IF	CITATIONS
199	Chevron Layer Structure in the Smectic A Phase of 8CB. Japanese Journal of Applied Physics, 1989, 28, L487-L489.	0.8	60
200	Angle Phase Matching in Second Harmonic Generation from a Ferroelectric Liquid Crystal. Japanese Journal of Applied Physics, 1989, 28, L997-L999.	0.8	64
201	Assessment of the Method for Determining the Elastic Constant Ratios in Nematics by Angular Dependence of Scattered Light Intensity. Japanese Journal of Applied Physics, 1989, 28, 56-67.	0.8	17
202	Smectic Layer Switching by an Electric Field in Ferroelectric Liquid Crystal Cells. Japanese Journal of Applied Physics, 1989, 28, L119-L120.	0.8	47
203	Determination of Ki (i = $1\hat{a}\in$ 3) and $\hat{1}/4j$ (j = $2\hat{a}\in$ 6) in 5CB by observing the angular dependence of Rayleigh line spectral widths. Liquid Crystals, 1989, 5, 341-347.	0.9	90
204	Ferroelectric liquid crystals Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1989, 47, 568-582.	0.0	3
205	Layer structure and electro-optic properties in surface stabilized ferroelectric liquid crystal cells. Ferroelectrics, 1988, 85, 99-109.	0.3	65
206	Switching process in surface stabilized ferroelectric liquid crystals: the number of states and walls observed during switching between bistable uniform states. Ferroelectrics, 1988, 85, 113-121.	0.3	13
207	Determination of Chevron Direction and Sign of the Boat-Shaped Disclination in Surface-Stabilized Ferroelectric Liquid Crystals. Japanese Journal of Applied Physics, 1988, 27, L1-L4.	0.8	23
208	Tristable Switching in Surface Stabilized Ferroelectric Liquid Crystals with a Large Spontaneous Polarization. Japanese Journal of Applied Physics, 1988, 27, L729-L732.	0.8	400
209	Zig-Zag Defects and Disclinations in the Surface-Stabilized Ferroelectric Liquid Crystals. Japanese Journal of Applied Physics, 1988, 27, 1-7.	0.8	111
210	New Electrooptic Switching in Ferroelectric Liquid Crystal Cells. Japanese Journal of Applied Physics, 1988, 27, L733-L735.	0.8	9
211	Structure of Twisted States in Ferroelectric Liquid Crystals Studied by Microspectrophotometry and Numerical Calculations. Japanese Journal of Applied Physics, 1988, 27, 8-13.	0.8	28
212	Relation between Spontaneous Polarization and Rotational Viscosity in Enantiomeric Mixtures of Ferroelectric Liquid Crystals. Japanese Journal of Applied Physics, 1988, 27, L276-L279.	0.8	45
213	Smectic Layer Structure of Thin Ferroelectric Liquid Crystal Cells Aligned by SiO Oblique Evaporation Technique. Japanese Journal of Applied Physics, 1988, 27, L1993-L1995.	0.8	43
214	Smectic C*Chevron Layer Structure Studied by X-Ray Diffraction. Japanese Journal of Applied Physics, 1988, 27, L725-L728.	0.8	103
215	Viscosity Measurement in Ferroelectric Liquid Crystals Using a Polarization Switching Current. Japanese Journal of Applied Physics, 1987, 26, L255-L257.	0.8	59
216	Switching Process in Ferroelectric Liquid Crystals; Disclination Dynamics of the Surface Stabilized States. Japanese Journal of Applied Physics, 1987, 26, 1-14.	0.8	152

#	Article	IF	CITATIONS
217	Determination of Twist Elastic ConstantK22in 5CB by Four Independent Light-Scattering Techniques. Japanese Journal of Applied Physics, 1987, 26, 1959-1966.	0.8	40
218	Determination of Twist Elastic ConstantK22by Forced Rayleigh Scattering. Japanese Journal of Applied Physics, 1987, 26, L240-L241.	0.8	12
219	Negligible Photoconductivity Efficiency and Impurity Sensitive Absorption Fine Structure at the Low Energy Tail of π-π*Transition in Trans-Polyacetylene. Japanese Journal of Applied Physics, 1987, 26, L2030-L2033.	0.8	7
220	Two Kinds of Switching Processes in Surface Stabilized Ferroelectric Liquid Crystals. Japanese Journal of Applied Physics, 1987, 26, L21-L24.	0.8	82
221	Giant Electroclinic Effect in Chiral Smectic A Phase of Ferroelectric Liquid Crystals. Japanese Journal of Applied Physics, 1987, 26, L1787-L1789.	0.8	76
222	Near IR absorption and pulsed-photoconductivity in polyacetylene. Synthetic Metals, 1987, 19, 990.	2.1	1
223	Molecular Orientation Structures of Surface Stablized States and Their Switching Processes in Ferroelectric Liquid Crystals. Molecular Crystals and Liquid Crystals, 1986, 139, 27-46.	0.9	37
224	Importance of Controlling Material Constants to Realize Bistable Uniform States in Surface Stabilized Ferroelectric Liquid Crystal Cells. Japanese Journal of Applied Physics, 1986, 25, L27-L29.	0.8	29
225	Accurate Determination ofK1/ηsplay,K2/ηtwistandK3/ηbendin Nematic Liquid Crystalsby Using Photon Correlation Spectroscopy. Japanese Journal of Applied Physics, 1986, 25, L607-L610.	0.8	26
226	Forced Rayleigh Scattering innCB's (n=5-9) with Methyl Red and Binary Mass Diffusion Constants. Japanese Journal of Applied Physics, 1986, 25, 1756-1761.	0.8	38
227	Alignment Controls and Switching Characteristics in a Ferroelectric Liquid Crystal with the Phase Sequence of N*-SC*. Japanese Journal of Applied Physics, 1986, 25, 1762-1767.	0.8	51
228	Experimental Confirmation of Angular Dependence of Rayleigh Line Spectral Width in Nematic Liquid Crystals. Japanese Journal of Applied Physics, 1986, 25, 769-774.	0.8	15
229	Molecular Selective Pre-Tilt on Glass Surfaces and Color Difference between Two Twisted States in Surface Stabilized Ferroelectric Liquid Crystal Cells. Japanese Journal of Applied Physics, 1986, 25, L206-L208.	0.8	28
230	Methods for Preparing SSFLC Cells and their Electro-Optical Properties. Molecular Crystals and Liquid Crystals, 1985, 122, 175-190.	0.9	36
231	Two Kinds of Boundary Motions in Thin Ferroelectric Smectic C*Liquid Crystals. Japanese Journal of Applied Physics, 1985, 24, L230-L232.	0.8	34
232	Correspondence between Stroboscopic Micrographs and Spontaneous Polarization Measurements in Surface Stabilized Ferroelectric Liquid Crystal Cells. Japanese Journal of Applied Physics, 1985, 24, L235-L238.	0.8	47
233	Optical Microscope Observation of Hexagonal Ordering in Surface Stabilized Ferroelectric Liquid Crystal Cells. Japanese Journal of Applied Physics, 1985, 24, L224-L226.	0.8	8
234	Anisotropy of Binary Mass Diffusion Constants in Nematic, Smectic A and Smectic B Phases Studied by Forced Rayleigh Scattering. Japanese Journal of Applied Physics, 1985, 24, L777-L780.	0.8	19

#	Article	IF	CITATIONS
235	Determination of the Frank Elastic Constant Ratios in Nematic Liquid Crystals (nCB) by Observing Angular Dependence of Rayleigh Light Scattering Intensity. Molecular Crystals and Liquid Crystals, 1985, 122, 161-168.	0.9	35
236	Binary Mass Diffusion Measurements in Nematic and Smectic Liquid Crystals by Forced Rayleigh Scattering. Molecular Crystals and Liquid Crystals, 1985, 122, 169-174.	0.9	26
237	Molecular Reorientaion Process in Chiral Smectic I Liquid Crystal. Japanese Journal of Applied Physics, 1985, 24, 893.	0.8	5
238	Dynamical Aspects of Switching between Surface Stabilized States in Smectic C*Ferroelectric Liquid Crystal. Japanese Journal of Applied Physics, 1985, 24, 899.	0.8	3
239	Dispersion Relation of Optical Eigen Modes in Chiral Smectic C by 4×4 Matrix Method. Japanese Journal of Applied Physics, 1984, 23, L660-L662.	0.8	18
240	A Practical Method of Preparing Thin Homogeneous Ferroelectric Smectic Cells for Electro-Optical Microsecond Switches (II): Sm A Liquid Crystal Growth under a Temperature Gradient. Japanese Journal of Applied Physics, 1984, 23, L211-L213.	0.8	48
241	Confirmation of Homodyne Detection in Forced Rayleigh Scattering for Determining Diffusion Constants of Liquid Crystals. Japanese Journal of Applied Physics, 1984, 23, L78-L80.	0.8	11
242	Numerical Calculation of Ellipticities of Optical Eigen Modes in Cholesteric Liquid Crystals. Japanese Journal of Applied Physics, 1984, 23, L464-L466.	0.8	7
243	Screw Dislocations Decorated by Disclinations of C-Directors Observed in Thin Ferroelectric Smectic Liquid Crystal Cells. Japanese Journal of Applied Physics, 1984, 23, L666-L668.	0.8	16
244	Binary Mass Diffusion Constants in Nematic Liquid Crystals Studied by Forced Rayleigh Scattering. Japanese Journal of Applied Physics, 1984, 23, 1420-1425.	0.8	47
245	Importance of pseudo-Jahn-Teller effect in the excited state for (TL+)2 — Type centers in alkali halides. Journal of Luminescence, 1984, 31-32, 323-325.	1.5	0
246	Novel method of preparing Ag–Hg alloy on polyacrylamide films and their structure. Journal of Applied Polymer Science, 1984, 29, 795-802.	1.3	9
247	X-ray analysis of α-, β-, and γ-phase Ag–Hg alloy films produced on polymer substrates by casting polyacrylamide–AgNO3 aqueous solution in Hg atmosphere. Journal of Applied Polymer Science, 1984, 29, 3813-3823.	1.3	4
248	Experimental Study on Higher Order Reflection by Monodomain Cholesteric Liquid Crystals. Molecular Crystals and Liquid Crystals, 1983, 101, 329-340.	0.9	26
249	Direct Method with Triangular Waves for Measuring Spontaneous Polarization in Ferroelectric Liquid Crystals. Japanese Journal of Applied Physics, 1983, 22, L661-L663.	0.8	542
250	Homodyne and Heterodyne Problems in Measuring Spectral Width of Polarized Rayleigh Line Scattered by Nematic Liquid Crystals. Japanese Journal of Applied Physics, 1983, 22, L769-L771.	0.8	4
251	Reentrant Distorted Sm C*Observed under Electric Field in Ferroelectric Smectic Liquid Crystals, nOBAMBC. Japanese Journal of Applied Physics, 1983, 22, L43-L45.	0.8	28
252	Light Propagation in Williams Domains as Analyzed Numerically by Geometrical Optics. Japanese Journal of Applied Physics, 1983, 22, 394-399.	0.8	43

#	Article	IF	CITATIONS
253	Helical Pitches and Tilt Angles in Room Temperature Ferroelectric Chiral Smectic C Liquid Crystals, MORAnand MBRAn. Japanese Journal of Applied Physics, 1983, 22, 566-568.	0.8	15
254	Photoconductive and Bolometric Effects in Trans-Polyacetylene by Near Infrared Light Irradiation. Japanese Journal of Applied Physics, 1983, 22, L264-L266.	0.8	9
255	A Tunable 90° Rotator Using a Total Reflection by a Monodomain Cholesteric Liquid Crystal Cell. Japanese Journal of Applied Physics, 1983, 22, L185-L187.	0.8	7
256	A Practical Method of Preparing Thin Homogeneous Ferroelectric Smectic Cells for Electro-Optical Microsecond Switches: Alignment Control of Liquid Crystal Molecules by Utilizing Spacer Edges. Japanese Journal of Applied Physics, 1983, 22, L85-L87.	0.8	47
257	Purity-Sensitive Dark and Photoconductivity in Trans-Polyacetylene. Japanese Journal of Applied Physics, 1983, 22, 1915-1919.	0.8	9
258	Magnetic Field Effects on Preparing Thin Homogeneous Ferroelectric Smectic Cells for Electro-Optical Microsecond Switches. Japanese Journal of Applied Physics, 1983, 22, L13-L15.	0.8	17
259	Surface-Induced Helix-Unwinding Process in Thin Homogeneous Ferroelectric Smectic Cells of DOBAMBC. Japanese Journal of Applied Physics, 1983, 22, L294-L296.	0.8	29
260	Experimental Studies on Reflection Spectra in Monodomain Cholesteric Liquid Crystal Cells: Total Reflection, Subsidiary Oscillation and Its Beat or Swell Structure. Japanese Journal of Applied Physics, 1983, 22, 1080-1091.	0.8	81
261	Determination of Helical Pitch in Homeotropic Cell of Chiral Smectic C Liquid Crystal Using F-Center Laser. Japanese Journal of Applied Physics, 1982, 21, L627-L629.	0.8	63
262	Hydrostatic Pressure Effects on Helical Pitches in Lyotropic Macromolecular Cholesteric Liquid Crystals: Ethyl Acetate Solutions of Poly-γ-Ethyl-D-Glutamate. Japanese Journal of Applied Physics, 1982, 21, 1391-1393.	0.8	0
263	A Method for Studying Optical Eigen Modes in Cholesteric Liquid Crystals by Using Stress Plate Modulators in Tandem. Japanese Journal of Applied Physics, 1982, 21, 1659-1664.	0.8	5
264	Determination of Tilt Bias Angles in Nematic Liquid Crystal Cells by Observing Angular Dependence of Rayleigh Line Intensity. Japanese Journal of Applied Physics, 1982, 21, L266-L268.	0.8	9
265	Temperature Sensitive Helical Pitches and Wall Anchoring Effects in Homogeneous Monodomains of Ferroelectric Sm C*Liquid Crystals,nOBAMBC (n=6-10). Japanese Journal of Applied Physics, 1982, 21, 224-229.	0.8	85
266	Numerical Calculation of Optical Eigenmodes in Cholesteric Liquid Crystals by 4×4 Matrix Method. Japanese Journal of Applied Physics, 1982, 21, 1543-1546.	0.8	41
267	Experimental Observation of the Total Reflection by a Monodomain Cholesteric Liquid Crystal. Japanese Journal of Applied Physics, 1982, 21, L390-L392.	0.8	35
268	Causes for the Appearance of Fringes in Cholesterics, Williams Domains and Chiral Smectic C Liquid Crystals. Japanese Journal of Applied Physics, 1981, 20, 1779-1785.	0.8	25
269	Photoconductivity of poly(vinyl alcohol) films with Fe3 complexes and ESR study of their structures. Journal of Applied Polymer Science, 1981, 26, 1659-1674.	1.3	11
270	Experimental Confirmation of Characteristic Augular Dependence at Low Intensity Levels in Rayleigh Scattering from Monodomain Nematics. Japanese Journal of Applied Physics, 1981, 20, 2019-2023.	0.8	14

#	Article	IF	CITATIONS
271	Preparation of Monodomain Cells of Ferroelectric Liquid Crystals and Their Evaluation with an Optical Microscope. Japanese Journal of Applied Physics, 1981, 20, 1773-1777.	0.8	47
272	Mixing Effects on the Cotton-Mouton Constant of 3OCB and 5OCB in Isotropic Phase. Japanese Journal of Applied Physics, 1981, 20, 503-508.	0.8	5
273	Anomalous Electric Field Dependence of Helical Pitches in Ferroelectric Sm C*at Temperatures Close to the Phase Transition to Sm A. Japanese Journal of Applied Physics, 1981, 20, L871-L873.	0.8	20
274	Photoconductivity of poly(vinyl alcohol) films containing Cu2 complexes. Journal of Polymer Science, Polymer Physics Edition, 1980, 18, 877-890.	1.0	13
275	Temperature Variation of Helical Pitches in Chiral Smectic C Liquid Crystals as Observed with an Optical Microscope. Japanese Journal of Applied Physics, 1980, 19, 2293-2294.	0.8	29
276	Dependence of Rayleigh Line Intensity on Scattering Angle in Aligned Nematie Liquid Crystals. Japanese Journal of Applied Physics, 1980, 19, 1937-1945.	0.8	21
277	APPLICATION OF A STRESS PLATE MODULATOR TO BIREFRINGENCE MEASUREMENTS IN TRANSPARENT FILMS. Journal of Fiber Science and Technology, 1980, 36, T465-T471.	0.0	4
278	Cotton-Mouton Effect of Alkyl- and Alkoxy-Cyanobiphenyls in Isotropic Phase. Japanese Journal of Applied Physics, 1979, 18, 2073-2080.	0.8	36
279	Determination of the Frank Elastic Constant Ratios in MBBA by Observing the Angular Dependence of Rayleigh Scattering. Japanese Journal of Applied Physics, 1979, 18, 1599-1600.	0.8	27
280	Coagulation of polymer–Cu2 complexes in polymer films and its application for producing semiconducting CuI surface layers. Journal of Applied Polymer Science, 1979, 23, 2279-2291.	1.3	14
281	Raman circular polarization difference spectra (I â~ I) excited by circularly polarized laser radiation in atactic polystyrene. Journal of Polymer Science, Polymer Letters Edition, 1979, 17, 415-419.	0.4	1
282	An ESR study of polymer-Cu(II) complexes in poly(vinyl alcohol), polyacrylamide, and poly(vinyl) Tj ETQq0 0 0 rgBT	- /Overloct 1.0	19 Tf 50 30
283	Anomalous Magnetic Field Induced Birefringence in 4'-n-Heptiloxy-4-Cyanobiphenyl in Isotropic Phase. Japanese Journal of Applied Physics, 1978, 17, 957-958.	0.8	4
284	Birefringence in the Sm A Phase and the Disappearance of Helicoidal Structure in the Sm C*Phase Caused by an Electric Field in DOBAMBC. Japanese Journal of Applied Physics, 1978, 17, 1219-1224.	0.8	27
285	Hydrostatic Pressure Effects on the Triplet Relaxed Excited States of KI: Tl+-Type Phosphors through the Quadratic Jahn-Teller Interaction. Journal of the Physical Society of Japan, 1977, 43, 2013-2020.	0.7	25
286	Magnetic Field Effect on the Triplet Relaxed Excited States Responsible for the ATand AXEmission Bands of Ga+and In+Centers in Alkali Halides. Journal of the Physical Society of Japan, 1976, 40, 776-783.	0.7	27
287	Magnetic circular dichroism of theA andB bands in KI:Ga+, KI:In+, and KI:Sn2+. Zeitschrift Für Physik B Condensed Matter and Quanta, 1976, 25, 211-218.	1.9	6
288	Relaxed excited states determined by Jahn-Teller effect in Ti+-type centers in alkali halides. Journal of Luminescence, 1976, 12-13, 139-149.	1.5	30

#	Article	IF	CITATIONS
289	Structure of the Jahn-Teller-inducedBabsorption band ofTI+-type centers in alkali halides. Physical Review B, 1976, 14, 3664-3671.	1.1	11
290	Negative magnetic circular polarization of the A-band emission in KI:Sn2+. Solid State Communications, 1973, 12, 1039-1043.	0.9	15
291	Unusually Large Change in Radiative Lifetime of theA-Band Emission in KI:In+and KI:Sn2+Induced by a Magnetic Field. Physical Review Letters, 1972, 28, 1032-1034.	2.9	32
292	Investigation of Luminescence from Bound Excitons in KBr:I by Using Polarized Light. Journal of the Physical Society of Japan, 1972, 32, 729-735.	0.7	2
293	Effect of a Vacancy on the Jahn-Teller-DistortedΓ4â^ Excited States in KI:Sn2+as Observed in Polarized Luminescence. Physical Review Letters, 1971, 26, 314-318.	2.9	36
294	Jahn-Teller Effect on the Structure of the Emission Produced by Excitation in theABand of KI: Tl-Type Phosphors. Two Kinds of Minima on theΓ4â"(T1u3)Adiabatic Potential-Energy Surface. Physical Review B, 1970, 1, 4161-4178.	1.1	253
295	Structure of the C Absorption Band of Tl+-Type Centers in Alkali Halides Due to the Jahn-Teller Effect. Journal of the Physical Society of Japan, 1969, 27, 96-109.	0.7	83
296	Absorption Bands of Paired-Ion Centers (Ga+)2, (In+)2and (Tl+)2in KI. Journal of the Physical Society of Japan, 1969, 26, 1006-1013.	0.7	34
297	Investigation of Intrinsic Luminescence of KI Crystals by Using Polarized Light. Journal of the Physical Society of Japan, 1969, 27, 1549-1550.	0.7	5
298	Polarization of luminescence in KBr:T1 type crystals due to the Jahn-Teller effect. Journal of Physics and Chemistry of Solids, 1967, 28, 1763-1780.	1.9	96
299	A, B and C Bands in KCl : In and KCl : Sn. Journal of the Physical Society of Japan, 1964, 19, 1274-1280.	0.7	68
300	The Fundamental Absorption of Lithium Fluoride and Sodium Fluoride. Journal of the Physical Society of Japan, 1961, 16, 340-340.	0.7	16
301	Renewed focus on the small temperature change of smectic layer spacing in ferroelectric and antiferroelectric LCs. Liquid Crystals, 0, , 1-13.	0.9	4
302	Ferrielectric six-layer () and several electric-field-induced subphases in AS657 studied by complementary methods, electric-field-induced birefringence and microbeam resonant X-ray scattering. Liquid Crystals, 0, , 1-19.	0.9	6