
Qiuxia Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10141615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Math1 is essential for genesis of cerebellar granule neurons. Nature, 1997, 390, 169-172.	27.8	636
2	Transcription factor Gbx2 acts cell-nonautonomously to regulate the formation of lineage-restriction boundaries of the thalamus. Development (Cambridge), 2009, 136, 1317-1326.	2.5	103
3	Specification of diverse cell types during early neurogenesis of the mouse cerebellum. ELife, 2019, 8, .	6.0	65
4	Gbx2 is essential for maintaining thalamic neuron identity and repressing habenular characters in the developing thalamus. Developmental Biology, 2015, 407, 26-39.	2.0	39
5	Shp2-Dependent ERK Signaling Is Essential for Induction of Bergmann Glia and Foliation of the Cerebellum. Journal of Neuroscience, 2014, 34, 922-931.	3.6	38
6	Analogous mechanism regulating formation of neocortical basal radial glia and cerebellar Bergmann glia. ELife, 2017, 6, .	6.0	32
7	Defining developmental diversification of diencephalon neurons through single-cell gene expression profiling. Development (Cambridge), 2019, 146, .	2.5	28
8	Integrated single-cell transcriptomic and epigenetic study of cell state transition and lineage commitment in embryonic mouse cerebellum. Science Advances, 2022, 8, eabl9156.	10.3	16
9	Regulation of self-renewing neural progenitors by FGF-ERK signaling controls formation of the inferior colliculus. Development (Cambridge), 2016, 143, 3661-3673.	2.5	9