List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1013979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	First principles calculation of metal (Ni and Cu) contact on the electronic transport properties of 2D GeP semiconductor. Applied Surface Science, 2021, 542, 148596.	6.1	12
2	Computational design of a polymorph for 2D III–V orthorhombic monolayers by first principles calculations: excellent anisotropic, electronic and optical properties. Physical Chemistry Chemical Physics, 2021, 23, 3771-3778.	2.8	20
3	CANPT Score: A Tool to Predict Severe COVID-19 on Admission. Frontiers in Medicine, 2021, 8, 608107.	2.6	15
4	Interfacial Engineering of Nickel Hydroxide on Cobalt Phosphide for Alkaline Water Electrocatalysis. Advanced Functional Materials, 2021, 31, 2101578.	14.9	101
5	A single palladium atom immerses in magnesium clusters: PdMg _n (n = 2–20) clusters DFT study. New Journal of Physics, 2021, 23, 103002.	2.9	14
6	Typeâ€II AsP/As van der Waals Heterostructures: Tunable Anisotropic Electronic Structures and Optical Properties. Advanced Materials Interfaces, 2021, 8, 2001555.	3.7	11
7	Spin-valley coupling and valley splitting in the MoSi2N4/CrCl3 van der Waals heterostructure. Applied Physics Letters, 2021, 119, .	3.3	24
8	Clinico-Psychosocial Factors Predicting Hepatocellular Carcinoma Related Knowledge Among Patients with Chronic Liver Disease. Journal of Cancer Education, 2020, 35, 937-945.	1.3	4
9	Liquid-phase growth and optoelectronic properties of two-dimensional hybrid perovskites CH ₃ NH ₃ PbX ₃ (X = Cl, Br, I). Nanoscale, 2020, 12, 1100-1108.	5.6	20
10	<p>Probable Longer Incubation Period for Elderly COVID-19 Cases: Analysis of 180 Contact Tracing Data in Hubei Province, China</p> . Risk Management and Healthcare Policy, 2020, Volume 13, 1111-1117.	2.5	24
11	<p>Difference in Biomarkers Between COVID-19 Patients and Other Pulmonary Infection Patients</p> . Infection and Drug Resistance, 2020, Volume 13, 2609-2615.	2.7	5
12	<adherence among="" and="" barriers="" carcinoma="" hepatocellular="" high-risk<br="" perceived="" surveillance="" to="">Chronic Liver Disease Patients in Yunnan, China. Cancer Management and Research, 2020, Volume 12, 6209-6220.</adherence>	1.9	7
13	Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation*. Chinese Physics B, 2020, 29, 096301.	1.4	5
14	Promoting Z-to-E Thermal Isomerization of Azobenzene Derivatives by Noncovalent Interaction with Phosphorene: Theoretical Prediction and Experimental Study. Journal of Physical Chemistry C, 2020, 124, 15961-15968.	3.1	3
15	Estimation of incubation period and serial interval of COVID-19: analysis of 178 cases and 131 transmission chains in Hubei province, China. Epidemiology and Infection, 2020, 148, e117.	2.1	70
16	Electron transport properties of 2D IV-V semiconductors and their improvement by graphene contact. Applied Surface Science, 2020, 519, 146203.	6.1	11
17	Electronic structure and photocatalytic properties of H, F modified two-dimensional GeTe. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 056301.	0.5	3
18	Theoretical studies on tunable electronic structures and potential applications of twoâ€dimensional arseneneâ€based materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1387.	14.6	33

#	Article	IF	CITATIONS
19	Resistance switching characteristics and mechanisms of MXene/SiO2 structure-based memristor. Applied Physics Letters, 2019, 115, .	3.3	39
20	<p>Biomarkers and sociodemographic factors predicting one-year readmission among liver cirrhosis patients</p> . Therapeutics and Clinical Risk Management, 2019, Volume 15, 979-989.	2.0	2
21	Participation rate and its influencing factors of a model demonstration cervical screening programme in rural China. Journal of Cancer Policy, 2019, 19, 100181.	1.4	0
22	Andreev reflection and 0- <i>Ï€</i> transition in graphene-based antiferromagnetic superconducting junctions. Europhysics Letters, 2019, 125, 37001.	2.0	9
23	X3N (X=C and Si) monolayers and their van der Waals Heterostructures with graphene and h-BN: Emerging tunable electronic structures by strain engineering. Carbon, 2019, 145, 1-9.	10.3	36
24	Evaluation of a model demonstration programme for the control of cervical cancer in rural China: A cross-Sectional study on existing databases from 2009 to 2014. Journal of Cancer Policy, 2018, 15, 59-65.	1.4	1
25	Monolayered Silicon and Germanium Monopnictide Semiconductors: Excellent Stability, High Absorbance, and Strain Engineering of Electronic Properties. ACS Applied Materials & Interfaces, 2018, 10, 5133-5139.	8.0	89
26	Hydrogen Evolution Reaction in Alkaline Media: Alpha- or Beta-Nickel Hydroxide on the Surface of Platinum?. ACS Energy Letters, 2018, 3, 237-244.	17.4	230
27	Tuning electronic and optical properties of arsenene/C ₃ N van der Waals heterostructure by vertical strain and external electric field. Nanotechnology, 2018, 29, 075201.	2.6	89
28	Chemical Functionalization of Pentagermanene Leads to Stabilization and Tunable Electronic Properties by External Tensile Strain. ACS Omega, 2017, 2, 171-180.	3.5	15
29	Incorporating Nitrogen-Doped Graphene Quantum Dots and Ni ₃ S ₂ Nanosheets: A Synergistic Electrocatalyst with Highly Enhanced Activity for Overall Water Splitting. Small, 2017, 13, 1700264.	10.0	120
30	Prediction on the light-assisted exfoliation of multilayered arsenene by the photo-isomerization of azobenzene. Nanoscale, 2017, 9, 7006-7011.	5.6	40
31	Tuning the collective switching behavior of azobenzene/Au hybrid materials: flexible versus rigid azobenzene backbones and Au(111) surfaces versus curved Au nanoparticles. Nanoscale, 2017, 9, 16700-16710.	5.6	13
32	A light-driven modulation of electric conductance through the adsorption of azobenzene onto silicon-doped- and pyridine-like N3-vacancy graphene. Nanoscale, 2017, 9, 19017-19025.	5.6	5
33	Tunable Rashba spin splitting in quantum-spin Hall-insulator AsF bilayers. Nano Research, 2017, 10, 491-502.	10.4	16
34	Behaviors Related to Mosquito-Borne Diseases among Different Ethnic Minority Groups along the China-Laos Border Areas. International Journal of Environmental Research and Public Health, 2017, 14, 1227.	2.6	6
35	Spatiotemporal mapping of cervical cancer incidence highlights need for targeted prevention in Songkhla province, Thailand. Health Policy and Planning, 2016, 32, czw145.	2.7	7
36	Chemically functionalized germanene for spintronic devices: a first-principles study. Physical Chemistry Chemical Physics, 2016, 18, 9809-9815.	2.8	20

#	Article	IF	CITATIONS
37	Quantum spin Hall insulators in functionalized arsenene (AsX, X = F, OH and CH ₃) monolayers with pronounced light absorption. Nanoscale, 2016, 8, 9657-9666.	5.6	63
38	Theoretical Designs of Photoresponsive Energy-Storage Materials Based on Attachment of ï€-Conjugated Molecules onto Sulfur-Doped Graphene. Journal of Physical Chemistry C, 2016, 120, 25131-25141.	3.1	12
39	Two-dimensional germanane and germanane ribbons: density functional calculation of structural, electronic, optical and transport properties and the role of defects. RSC Advances, 2016, 6, 28298-28307.	3.6	18
40	First Principles Study of Electronic and Magnetic Properties of Co-Doped Armchair Graphene Nanoribbons. Journal of Nanomaterials, 2015, 2015, 1-9.	2.7	3
41	Subnanoscale hydrophobic modulation of salt bridges in aqueous media. Science, 2015, 348, 555-559.	12.6	51
42	Quantum chemical study on the structure and the analytic potential energy function of PS2 (X2A1). Russian Journal of Physical Chemistry A, 2015, 89, 668-673.	0.6	1
43	Polarization Effect and Electric Potential Changes in the Stimuli-Responsive Molecular Monolayers Under an External Electric Field. Journal of Physical Chemistry C, 2015, 119, 22866-22881.	3.1	11
44	Effects of Stone-Wales Defect Symmetry on the Electronic Structure and Transport Properties of Narrow Armchair Graphene Nanoribbon. Journal of Physics and Chemistry of Solids, 2015, 77, 8-13.	4.0	17
45	Bond Dissociation Energies and Electronic Structures in a Series of Peroxy Radicals: A Theoretical Study. Journal of the Chinese Chemical Society, 2014, 61, 556-562.	1.4	2
46	Vacancy-Induced Intramolecular Junctions and Quantum Transport in Metallic Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 22984-22990.	3.1	1
47	Theoretical studies on a series of nitroaliphatic energetic compounds. Chinese Physics B, 2014, 23, 063103.	1.4	0
48	Atomistic simulations of divacancy defects in armchair graphene nanoribbons: Stability, electronic structure, and electron transport properties. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 416-420.	2.1	23
49	Coupled-cluster single-double theory study on the analytic potential energy function of the SeN2 radicals. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 063101.	0.5	1
50	Edge reconstruction limited electron transport of zigzag graphene nanoribbon. European Physical Journal B, 2013, 86, 1.	1.5	7
51	Quantum chemical calculations of bond dissociation energies for COOH scission and electronic structure in some acids. Chinese Physics B, 2013, 22, 023301.	1.4	7
52	Structural Defects on the Electronic Transport Properties of Carbon-Based Nanostructures. Carbon Materials, 2013, , 77-103.	1.2	0
53	Theoretical study of the structure and analytic potential energy function for the ground state of the PO ₂ molecule. Chinese Physics B, 2012, 21, 078202.	1.4	5
54	Controllable tuning of the electronic transport in pre-designed graphene nanoribbon. Current Applied Physics, 2012, 12, 1611-1614.	2.4	10

#	Article	IF	CITATIONS
55	Modulation of electric behavior by position-dependent substitutional impurity in zigzag-edged graphene nanoribbon. Computational Materials Science, 2012, 60, 234-238.	3.0	11
56	Tailoring atomic structure to control the electronic transport in zigzag graphene nanoribbon. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 3277-3280.	2.1	3
57	Bond dissociation energies for removal of the hydroxyl group in some alcohols from quantum chemical calculations. International Journal of Quantum Chemistry, 2012, 112, 665-671.	2.0	8
58	Role of nitrogen distribution in asymmetric Stone–Wales defects on electronic transport of graphene nanoribbons. Physica Status Solidi (B): Basic Research, 2012, 249, 128-133.	1.5	4
59	Atomic and electronic structures of divacancy in graphene nanoribbons. Physica B: Condensed Matter, 2012, 407, 204-208.	2.7	7
60	Atomic vacancy defects in the electronic properties of semi-metallic carbon nanotubes. Journal of Applied Physics, 2011, 109, 083716.	2.5	14
61	Electronic transport properties of graphene nanoribbons with anomalous edges. EPJ Applied Physics, 2011, 53, 20602.	0.7	10
62	Effect of N doping and Stone-Wales defects on the electronic properties of graphene nanoribbons. European Physical Journal B, 2011, 79, 335-340.	1.5	42
63	A theoretical study of the accurate analytic potential energy curve and spectroscopic properties for AIF (X1Σ+). Computational and Theoretical Chemistry, 2011, 963, 130-134.	2.5	4
64	Investigation of correlation between impact sensitivities and bond dissociation energies in some triazole energetic compounds. Structural Chemistry, 2010, 21, 1235-1240.	2.0	26
65	Quantum chemical study of C–SH bond dissociation energies for some thiol compounds. Computational and Theoretical Chemistry, 2009, 909, 9-12.	1.5	8
66	Theoretical studies of bond dissociation energies for removal of the nitrile group in some nitrile compounds. Computational and Theoretical Chemistry, 2008, 863, 133-136.	1.5	5
67	Theoretical studies of C–NH2 bond dissociation energies for some amino compounds. Computational and Theoretical Chemistry, 2006, 766, 87-92.	1.5	13
68	Neural networks study on the correlation between impact sensitivity and molecular structures for nitramine explosives. Structural Chemistry, 2006, 17, 501-507.	2.0	31
69	Application of R Software in the Experiment Teaching of Medical Advanced Mathematics. , 0, , .		0