Hirotada Gamo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10136481/publications.pdf

Version: 2024-02-01

1478505 1372567 10 106 10 6 citations h-index g-index papers 10 10 10 81 docs citations times ranked citing authors all docs

#	ARTICLE	IF	CITATIONS
1	Synthesis, stereocomplex crystallization, homo-crystallization, and thermal properties and degradation of enantiomeric aromatic poly(lactic acid)s, poly(mandelic acid)s. Polymer Degradation and Stability, 2022, 195, 109803.	5.8	4
2	Synthesis of an All ₃ -doped Li ₂ S positive electrode with superior performance in all-solid-state batteries. Materials Advances, 2022, 3, 2488-2494.	5.4	11
3	Preparation of Cal ₂ -Doped Li ₇ P ₃ S ₁₁ by Liquid-Phase Synthesis and Its Application in an All-Solid-State Battery with a Graphite Anode. Energy & Description of Energy &	5.1	3
4	Solution Processing via Dynamic Sulfide Radical Anions for Sulfide Solid Electrolytes. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	8
5	High Ionic Conductivity with Improved Lithium Stability of CaS- and Cal ₂ -Doped Li ₇ P ₃ S ₁₁ Solid Electrolytes Synthesized by Liquid-Phase Synthesis. ACS Omega, 2022, 7, 16561-16567.	3.5	3
6	lonic Conduction and Electric Modulus in Li ₂ S–CaS and Ca <i>X</i> ₂ (<i>X</i> = F, Cl, Br, and I) Nanocomposites. Electrochemistry, 2022, 90, 067005-067005.	1.4	4
7	Effects of Substituting S with Cl on the Structural and Electrochemical Characteristics of Na ₃ SbS ₄ Solid Electrolytes. ACS Applied Energy Materials, 2021, 4, 6125-6134.	5.1	28
8	The effect of solvent on reactivity of the Li2S–P2S5 system in liquid-phase synthesis of Li7P3S11 solid electrolyte. Scientific Reports, 2021, 11, 21097.	3.3	15
9	Na3+x(Sb1-xSnx)S4 solid electrolytes (Oâ€â‰ 8 € xâ€â‰ 8 € 0.1) as sodium ion conductors. Solid State Ionics, 20 115133.	020, 344, 2.7	11
10	Multiphase Na3SbS4 with high ionic conductivity. Materials Today Energy, 2019, 13, 45-49.	4.7	19