
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1013608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains. Science, 1995, 269, 807-813.	6.0	378
2	ProteomeBinders: planning a European resource of affinity reagents for analysis of the human proteome. Nature Methods, 2007, 4, 13-17.	9.0	231
3	Neurobeachin: A Protein Kinase A-Anchoring, <i>beige</i> /Chediak-Higashi Protein Homolog Implicated in Neuronal Membrane Traffic. Journal of Neuroscience, 2000, 20, 8551-8565.	1.7	204
4	Analysis of A-kinase anchoring protein (AKAP) interaction with protein kinase A (PKA) regulatory subunits: PKA isoform specificity in AKAP binding. Journal of Molecular Biology, 2000, 298, 329-339.	2.0	175
5	PGE1 stimulation of HEK293 cells generates multiple contiguous domains with different [cAMP]: role of compartmentalized phosphodiesterases. Journal of Cell Biology, 2006, 175, 441-451.	2.3	171
6	Recombinant Human Peroxisomal Targeting Signal Receptor PEX5. Journal of Biological Chemistry, 1999, 274, 5666-5673.	1.6	160
7	Identification of a Novel A-kinase Anchoring Protein 18 Isoform and Evidence for Its Role in the Vasopressin-induced Aquaporin-2 Shuttle in Renal Principal Cells. Journal of Biological Chemistry, 2004, 279, 26654-26665.	1.6	125
8	Active Site Mutations Define the Pathway for the Cooperative Activation of cAMP-Dependent Protein Kinaseâ€. Biochemistry, 1996, 35, 2934-2942.	1.2	121
9	Inhibition of T Cell Activation by Cyclic Adenosine 5′-Monophosphate Requires Lipid Raft Targeting of Protein Kinase A Type I by the A-Kinase Anchoring Protein Ezrin. Journal of Immunology, 2007, 179, 5159-5168.	0.4	108
10	Expression of the catalytic subunit of cAMP-dependent protein kinase in Escherichia coli: multiple isozymes reflect different phosphorylation states. Protein Engineering, Design and Selection, 1993, 6, 771-777.	1.0	103
11	Parkinson-related LRRK2 mutation R1441C/G/H impairs PKA phosphorylation of LRRK2 and disrupts its interaction with 14-3-3. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E34-43.	3.3	103
12	Tetramerization Dynamics of C-terminal Domain Underlies Isoform-specific cAMP Gating in Hyperpolarization-activated Cyclic Nucleotide-gated Channels. Journal of Biological Chemistry, 2011, 286, 44811-44820.	1.6	101
13	Physiological inhibitors of the catalytic subunit of cAMP-dependent protein kinase: effect of magnesium-ATP on protein-protein interactions. Biochemistry, 1993, 32, 14015-14022.	1.2	93
14	Small Molecule AKAP-Protein Kinase A (PKA) Interaction Disruptors That Activate PKA Interfere with Compartmentalized cAMP Signaling in Cardiac Myocytes. Journal of Biological Chemistry, 2011, 286, 9079-9096.	1.6	92
15	Structural and functional analysis of phosphorylation-specific binders of the kinase ERK from designed ankyrin repeat protein libraries. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2248-57.	3.3	91
16	Crosstalk between Domains in the Regulatory Subunit of cAMP-Dependent Protein Kinase: Influence of Amino Terminus on cAMP Binding and Holoenzyme Formation. Biochemistry, 1994, 33, 7485-7494.	1.2	87
17	Protein Kinase A-Dependent Step(s) in Hepatitis C Virus Entry and Infectivity. Journal of Virology, 2008, 82, 8797-8811.	1.5	87
18	The chicken leukocyte receptor complex encodes a primordial, activating, high-affinity IgY Fc receptor. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11718-11723.	3.3	85

#	Article	IF	CITATIONS
19	Dissection of the Nucleotide and Metalâ^'Phosphate Binding Sites in cAMP-Dependent Protein Kinaseâ€. Biochemistry, 1999, 38, 6352-6360.	1.2	84
20	PrKX Is a Novel Catalytic Subunit of the cAMP-dependent Protein Kinase Regulated by the Regulatory Subunit Type I. Journal of Biological Chemistry, 1999, 274, 5370-5378.	1.6	81
21	Isoform-Selective Disruption of AKAP-Localized PKA Using Hydrocarbon Stapled Peptides. ACS Chemical Biology, 2014, 9, 635-642.	1.6	75
22	Application of Bioluminescence Resonance Energy Transfer (BRET) for Biomolecular Interaction Studies. ChemBioChem, 2006, 7, 1007-1012.	1.3	70
23	Structure-Guided Design of Selective Epac1 and Epac2 Agonists. PLoS Biology, 2015, 13, e1002038.	2.6	68
24	Study of the subunit interactions in myosin phosphatase by surface plasmon resonance. FEBS Journal, 2000, 267, 1687-1697.	0.2	66
25	The dynamic switch mechanism that leads to activation of LRRK2 is embedded in the DFGÏ^ motif in the kinase domain. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14979-14988.	3.3	66
26	Importance of the A-helix of the catalytic subunit of cAMP-dependent protein kinase for stability and for orienting subdomains at the cleft interface. Protein Science, 1997, 6, 569-579.	3.1	62
27	Novel, isotype-specific sensors for protein kinase A subunit interaction based on bioluminescence resonance energy transfer (BRET). Cellular Signalling, 2006, 18, 1616-1625.	1.7	62
28	Structural Basis for Cyclic-Nucleotide Selectivity and cGMP-Selective Activation of PKG I. Structure, 2014, 22, 116-124.	1.6	61
29	The Pseudomonas aeruginosa Chemotaxis Methyltransferase CheR1 Impacts on Bacterial Surface Sampling. PLoS ONE, 2011, 6, e18184.	1.1	59
30	Divalent Metal Ions Mg ²⁺ and Ca ²⁺ Have Distinct Effects on Protein Kinase A Activity and Regulation. ACS Chemical Biology, 2015, 10, 2303-2315.	1.6	57
31	Designed Ankyrin Repeat Proteins (DARPins) as Novel Isoform-Specific Intracellular Inhibitors of c-Jun N-Terminal Kinases. ACS Chemical Biology, 2012, 7, 1356-1366.	1.6	56
32	Structure of cyclin G-associated kinase (GAK) trapped in different conformations using nanobodies. Biochemical Journal, 2014, 459, 59-69.	1.7	56
33	High-affinity AKAP7δ–protein kinase A interaction yields novel protein kinase A-anchoring disruptor peptides. Biochemical Journal, 2006, 396, 297-306.	1.7	55
34	A chemical proteomics approach to identify c-di-GMP binding proteins in Pseudomonas aeruginosa. Journal of Microbiological Methods, 2012, 88, 229-236.	0.7	52
35	Surface plasmon resonance studies prove the interaction of skeletal muscle sarcoplasmic reticular Ca2+release channel/ryanodine receptor with calsequestrin. FEBS Letters, 2000, 472, 73-77.	1.3	50
36	HUPO Brain Proteome Project: Summary of the pilot phase and introduction of a comprehensive data reprocessing strategy. Proteomics, 2006, 6, 4890-4898.	1.3	47

#	Article	IF	CITATIONS
37	Stepwise Subunit Interaction Changes by Mono- and Bisphosphorylation of Cardiac Troponin I. Biochemistry, 1998, 37, 13516-13525.	1.2	46
38	Glycogen Synthase Kinase 3β Interaction Protein Functions as an A-kinase Anchoring Protein. Journal of Biological Chemistry, 2010, 285, 5507-5521.	1.6	45
39	Merlin Links to the cAMP Neuronal Signaling Pathway by Anchoring the Rlβ Subunit of Protein Kinase A. Journal of Biological Chemistry, 2003, 278, 41167-41172.	1.6	44
40	Activation of C-terminal Src kinase (Csk) by phosphorylation at serine-364 depends on the Csk-Src homology 3 domain. Biochemical Journal, 2003, 372, 271-278.	1.7	44
41	Biomolecular interaction analysis in functional proteomics. Journal of Neural Transmission, 2006, 113, 1015-1032.	1.4	44
42	Mechanism of cAMP Partial Agonism in Protein Kinase G (PKG). Journal of Biological Chemistry, 2015, 290, 28631-28641.	1.6	44
43	Activating PRKACB somatic mutation in cortisol-producing adenomas. JCI Insight, 2018, 3, .	2.3	44
44	A Stable α-Helical Domain at the N Terminus of the RIα Subunits of cAMP-dependent Protein Kinase Is a Novel Dimerization/Docking Motif. Journal of Biological Chemistry, 1997, 272, 28431-28437.	1.6	42
45	Divalent metal ions control activity and inhibition of protein kinases. Metallomics, 2017, 9, 1576-1584.	1.0	42
46	Ndel1 alters its conformation by sequestering cAMP-specific phosphodiesterase-4D3 (PDE4D3) in a manner that is dynamically regulated through Protein Kinase A (PKA). Cellular Signalling, 2008, 20, 2356-2369.	1.7	41
47	The Chicken Leukocyte Receptor Complex Encodes a Family of Different Affinity FcY Receptors. Journal of Immunology, 2009, 182, 6985-6992.	0.4	41
48	Binding of the Human 14-3-3 Isoforms to Distinct Sites in the Leucine-Rich Repeat Kinase 2. Frontiers in Neuroscience, 2020, 14, 302.	1.4	41
49	Effect of metal ions on high-affinity binding of pseudosubstrate inhibitors to PKA. Biochemical Journal, 2008, 413, 93-101.	1.7	40
50	PKA-RII subunit phosphorylation precedes activation by cAMP and regulates activity termination. Journal of Cell Biology, 2018, 217, 2167-2184.	2.3	40
51	Crystal Structure of PKG I:cGMP Complex Reveals a cGMP-Mediated Dimeric Interface that Facilitates cGMP-Induced Activation. Structure, 2016, 24, 710-720.	1.6	39
52	cAMP-dependent protein kinase defines a family of enzymes. Philosophical Transactions of the Royal Society B: Biological Sciences, 1993, 340, 315-324.	1.8	38
53	Surface-plasmon-resonance-based biosensor with immobilized bisubstrate analog inhibitor for the determination of affinities of ATP- and protein-competitive ligands of cAMP-dependent protein kinase. Analytical Biochemistry, 2007, 362, 268-277.	1.1	36
54	Chemical tools selectively target components of the PKA system. BMC Chemical Biology, 2009, 9, 3.	1.6	36

#	Article	IF	CITATIONS
55	Characterization of A-kinase-anchoring disruptors using a solution-based assay. Biochemical Journal, 2006, 400, 493-499.	1.7	35
56	A Community Standard Format for the Representation of Protein Affinity Reagents. Molecular and Cellular Proteomics, 2010, 9, 1-10.	2.5	35
57	PKA-Type I Selective Constrained Peptide Disruptors of AKAP Complexes. ACS Chemical Biology, 2015, 10, 1502-1510.	1.6	35
58	Conformation and dynamics of the kinase domain drive subcellular location and activation of LRRK2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	35
59	Molecular basis for isoform-specific autoregulation of protein kinase A. Cellular Signalling, 2007, 19, 2024-2034.	1.7	34
60	Regulation of anchoring of the RIIα regulatory subunit of PKA to AKAP95 by threonine phosphorylation of RIIα: implications for chromosome dynamics at mitosis. Journal of Cell Science, 2001, 114, 3255-3264.	1.2	34
61	Germline and Mosaic Variants in PRKACA and PRKACB Cause a Multiple Congenital Malformation Syndrome. American Journal of Human Genetics, 2020, 107, 977-988.	2.6	33
62	Pain modulators regulate the dynamics of PKA-RII phosphorylation in subgroups of sensory neurons. Journal of Cell Science, 2014, 127, 216-29.	1.2	32
63	Dictyostelium Lipid Droplets Host Novel Proteins. Eukaryotic Cell, 2013, 12, 1517-1529.	3.4	32
64	Rp-cAMPS Prodrugs Reveal the cAMP Dependence of First-Phase Glucose-Stimulated Insulin Secretion. Molecular Endocrinology, 2015, 29, 988-1005.	3.7	32
65	CDK1-mediated phosphorylation of the RIIα regulatory subunit of PKA works as a molecular switch that promotes dissociation of RIIα from centrosomes at mitosis. Journal of Cell Science, 2001, 114, 3243-3254.	1.2	32
66	Single Turnover Autophosphorylation Cycle of the PKA RIIÎ ² Holoenzyme. PLoS Biology, 2015, 13, e1002192.	2.6	30
67	PI4K2301Accession numbers for sequences employed are: PI4K230, human 2326227; PI4K97, human 1172504; PI4K230, rat D83538; PI4K230, bovine 2136690 and 2198791; PI4K200, S. cerevisiae D13717; PI4K92, bovine 2198789; PI4K92, human 1894947; PI4K92, rat 1906794; PI4K68, Chaenorabditis U41540; PI4K122, Dictvostelium 2120376D: PI4K95. S. pombe Z70043: PI4K120. S. cerevisiae S39245. The following	1.2	29
68	nomenclature for Ptdins 4-kinase. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, Stimulation of Proglucagon Gene Expression by Human GPR119 in Enteroendocrine L-cell Line GLUTag. Molecular Endocrinology, 2013, 27, 1267-1282.	3.7	29
69	Cyclic Nucleotide Mapping of Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) Channels. ACS Chemical Biology, 2014, 9, 1128-1137.	1.6	27
70	G <i>α</i> s–Protein Kinase A (PKA) Pathway Signalopathies: The Emerging Genetic Landscape and Therapeutic Potential of Human Diseases Driven by Aberrant G <i>α</i> s-PKA Signaling. Pharmacological Reviews, 2021, 73, 1326-1368.	7.1	27
71	Applications of biomolecular interaction analysis in drug development. Targets, 2002, 1, 66-73.	0.3	26
72	Magneto-optic surface plasmon resonance optimum layers: Simulations for biological relevant refractive index changes. Journal of Applied Physics, 2012, 112, .	1.1	25

#	Article	IF	CITATIONS
73	AKAP18:PKA-RIIα structure reveals crucial anchor points for recognition of regulatory subunits of PKA. Biochemical Journal, 2016, 473, 1881-1894.	1.7	25
74	Comparative thermodynamic analysis of cyclic nucleotide binding to protein kinase A. Biological Chemistry, 2007, 388, 163-72.	1.2	24
75	cAMP-Dependent Protein Kinase and cGMP-Dependent Protein Kinase as Cyclic Nucleotide Effectors. Handbook of Experimental Pharmacology, 2015, 238, 105-122.	0.9	24
76	Crystal Structures of the Carboxyl cGMP Binding Domain of the Plasmodium falciparum cGMP-dependent Protein Kinase Reveal a Novel Capping Triad Crucial for Merozoite Egress. PLoS Pathogens, 2015, 11, e1004639.	2.1	24
77	Determination of Kinetic Data Using Surface Plasmon Resonance Biosensors. , 2004, 94, 299-320.		23
78	Direct Optical Detection of Protein–Ligand Interactions. , 2005, 305, 017-046.		23
79	Trapidil protects ischemic hearts from reperfusion injury by stimulating PKAII activity. Cardiovascular Research, 2003, 58, 602-610.	1.8	22
80	Human phosphatidylinositol 4-kinase isoform PI4K92. FEBS Journal, 2001, 268, 2099-2106.	0.2	21
81	Mutations of PKA cyclic nucleotide-binding domains reveal novel aspects of cyclic nucleotide selectivity. Biochemical Journal, 2017, 474, 2389-2403.	1.7	21
82	Analysis of posttranslational modifications exemplified using protein kinase A. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1788-1800.	1.1	20
83	Mechanism of allosteric inhibition in the Plasmodium falciparum cGMP-dependent protein kinase. Journal of Biological Chemistry, 2020, 295, 8480-8491.	1.6	20
84	Regulation of cAMP-dependent Protein Kinases. Journal of Biological Chemistry, 2010, 285, 35910-35918.	1.6	19
85	Cyclic nucleotides as affinity tools: Phosphorothioate cAMP analogues address specific PKA subproteomes. New Biotechnology, 2011, 28, 294-301.	2.4	18
86	Kinase Domain Is a Dynamic Hub for Driving LRRK2 Allostery. Frontiers in Molecular Neuroscience, 2020, 13, 538219.	1.4	18
87	LRRK2 dynamics analysis identifies allosteric control of the crosstalk between its catalytic domains. PLoS Biology, 2022, 20, e3001427.	2.6	18
88	Biochemical characterization and cellular imaging of a novel, membrane permeable fluorescent cAMP analog. BMC Biochemistry, 2008, 9, 18.	4.4	17
89	New cGMP analogues restrain proliferation and migration of melanoma cells. Oncotarget, 2018, 9, 5301-5320.	0.8	17
90	Differential binding studies applying functional protein microarrays and surface plasmon resonance. Proteomics, 2006, 6, 5132-5139.	1.3	15

#	Article	IF	CITATIONS
91	The testis-specific Cα2 subunit of PKA is kinetically indistinguishable from the common Cα1 subunit of PKA. BMC Biochemistry, 2011, 12, 40.	4.4	15
92	Structural and evolutionary divergence of cyclic nucleotide binding domains in eukaryotic pathogens: Implications for drug design. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1575-1585.	1.1	15
93	Defining Aâ€Kinaseâ€Anchoring Protein (AKAP) Specificity for the Protein Kinaseâ€A Subunit RI (PKAâ€RI). ChemBioChem, 2016, 17, 693-697.	1.3	15
94	Application of Synthetic Peptide Arrays To Uncover Cyclic Di-GMP Binding Motifs. Journal of Bacteriology, 2016, 198, 138-146.	1.0	15
95	The Tails of Protein Kinase A. Molecular Pharmacology, 2022, 101, 219-225.	1.0	15
96	Allosteric Inhibition of Parkinson's-Linked LRRK2 by Constrained Peptides. ACS Chemical Biology, 2021, 16, 2326-2338.	1.6	15
97	Nanobodies as allosteric modulators of Parkinson's disease–associated LRRK2. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15
98	Quantification of cAMP antagonist action in vitro and in living cells. European Journal of Cell Biology, 2006, 85, 663-672.	1.6	14
99	Plasma Protein Binding Properties to Immobilized Heparin and Heparin?Albumin Conjugate. Artificial Organs, 2007, 31, 466-471.	1.0	14
100	The High Biofilm-Encoding Bee Locus: A Second Pilus Gene Cluster in EnterococcusÂfaecalis?. Current Microbiology, 2009, 59, 206-211.	1.0	13
101	cCMP Binding Domain D Mediates a Unique Activation Mechanism in <i>Plasmodium falciparum</i> PKG. ACS Infectious Diseases, 2018, 4, 415-423.	1.8	13
102	PKA Cβ: a forgotten catalytic subunit of cAMP-dependent protein kinase opens new windows for PKA signaling and disease pathologies. Biochemical Journal, 2021, 478, 2101-2119.	1.7	13
103	FRET-based screening assay using small-molecule photoluminescent probes in lysate of cells overexpressing RFP-fused protein kinases. Analytical Biochemistry, 2015, 481, 10-17.	1.1	12
104	A novel c-di-GMP binding domain in glycosyltransferase BgsA is responsible for the synthesis of a mixed-linkage β-glucan. Scientific Reports, 2017, 7, 8997.	1.6	12
105	Targeted Inhibition of <i>Plasmodium falciparum</i> Calcium-Dependent Protein Kinase 1 with a Constrained J Domain-Derived Disruptor Peptide. ACS Infectious Diseases, 2019, 5, 506-514.	1.8	12
106	Crystal structure of cGMPâ€dependent protein kinase lβ cyclic nucleotideâ€bindingâ€B domain : Rpâ€cGMPS complex reveals an apoâ€like, inactive conformation. FEBS Letters, 2017, 591, 221-230.	1.3	11
107	Metal coordination in kinases and pseudokinases. Biochemical Society Transactions, 2017, 45, 653-663.	1.6	11
108	Structural Basis of Analog Specificity in PKG I and II. ACS Chemical Biology, 2017, 12, 2388-2398.	1.6	11

#	Article	IF	CITATIONS
109	A Stapled Peptide Mimic of the Pseudosubstrate Inhibitor PKI Inhibits Protein Kinase A. Molecules, 2019, 24, 1567.	1.7	11
110	Utilisation of antibody microarrays for the selection of specific and informative antibodies from recombinant library binders of unknown quality. New Biotechnology, 2016, 33, 574-581.	2.4	10
111	Investigating PKA-RII specificity using analogs of the PKA:AKAP peptide inhibitor STAD-2. Bioorganic and Medicinal Chemistry, 2018, 26, 1174-1178.	1.4	10
112	Identification and Characterization of Novel Mutations in the Human Gene Encoding the Catalytic Subunit Calpha of Protein Kinase A (PKA). PLoS ONE, 2012, 7, e34838.	1.1	10
113	Systematic interpretation of cyclic nucleotide binding studies using KinetXBase. Proteomics, 2008, 8, 1212-1220.	1.3	9
114	Neurochondrin is an atypical RIIα-specific A-kinase anchoring protein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1667-1675.	1.1	9
115	A coupled photometric assay for characterization of S-adenosyl-l-homocysteine hydrolases in the physiological hydrolytic direction. New Biotechnology, 2017, 39, 11-17.	2.4	8
116	Rearrangements in a hydrophobic core region mediate cAMP action in the regulatory subunit of PKA. Biological Chemistry, 2005, 386, 623-631.	1.2	7
117	S-Adenosyl-L-Homocysteine Hydrolase Inhibition by a Synthetic Nicotinamide Cofactor Biomimetic. Frontiers in Microbiology, 2018, 9, 505.	1.5	7
118	Expression of a chimeric, cGMP-sensitive regulatory subunit of the cAMP-depedent protein kinase type Iα. FEBS Letters, 1995, 374, 356-362.	1.3	6
119	Regulation of Cardiac PKA Signaling by cAMP and Oxidants. Antioxidants, 2021, 10, 663.	2.2	6
120	Uncoupling of baitâ€protein expression from the prey protein environment adds versatility for cell and tissue interaction proteomics and reveals a complex of CARPâ€1 and the PKA Cβ1 subunit. Proteomics, 2010, 10, 2890-2900.	1.3	5
121	Transport Efficiency of Biofunctionalized Magnetic Particles Tailored by Surfactant Concentration. Langmuir, 2021, 37, 8498-8507.	1.6	5
122	Drugging the Undruggable: How Isoquinolines and PKA Initiated the Era of Designed Protein Kinase Inhibitor Therapeutics. Biochemistry, 2021, 60, 3470-3484.	1.2	5
123	Seven successful years of Omics research: The Human Brain Proteome Project within the National German Research Network (NGFN). Proteomics, 2008, 8, 1116-1117.	1.3	4
124	Regulatory Subunit I-controlled Protein Kinase A Activity Is Required for Apical Bile Canalicular Lumen Development in Hepatocytes. Journal of Biological Chemistry, 2009, 284, 20773-20780.	1.6	4
125	Chemical synthesis and biological activity of novel brominated 7-deazaadenosine-3â€2,5â€2-cyclic monophosphate derivatives. Bioorganic and Medicinal Chemistry, 2019, 27, 1704-1713.	1.4	4
126	Inhibitors and fluorescent probes for protein kinase PKAcÎ ² and its S54L mutant, identified in a patient with cortisol producing adenoma. Bioscience, Biotechnology and Biochemistry, 2020, 84, 1839-1845.	0.6	4

FRIEDRICH W HERBERG

#	Article	IF	CITATIONS
127	Analysis of Pigment-Dispersing Factor Neuropeptides and Their Receptor in a Velvet Worm. Frontiers in Endocrinology, 2020, 11, 273.	1.5	4
128	Nanostructured modified ultrananocrystalline diamond surfaces as immobilization support for lipases. Diamond and Related Materials, 2018, 90, 32-39.	1.8	3
129	Molecular Basis for Ser/Thr Specificity in PKA Signaling. Cells, 2020, 9, 1548.	1.8	3
130	cAMP-Dependent Signaling Pathways as Potential Targets for Inhibition of Plasmodium falciparum Blood Stages. Frontiers in Microbiology, 2021, 12, 684005.	1.5	3
131	Dynamical Basis of Allosteric Activation for the Plasmodium falciparum Protein Kinase G. Journal of Physical Chemistry B, 2021, 125, 6532-6542.	1.2	3
132	Correction: Inhibition of T Cell Activation by Cyclic Adenosine 5′-Monophosphate Requires Lipid Raft Targeting of Protein Kinase A Type I by the A-Kinase Anchoring Protein Ezrin. Journal of Immunology, 2011, 186, 7269-7271.	0.4	1
133	Switching Cyclic Nucleotide-Selective Activation of Cyclic Adenosine Monophosphate-Dependent Protein Kinase Holoenzyme Reveals Distinct Roles of Tandem Cyclic Nucleotide-Binding Domains. ACS Chemical Biology, 2017, 12, 3057-3066.	1.6	1
134	The role of a parasite-specific D-site in activation of Plasmodium falciparum cGMP-dependent protein kinase. BMC Pharmacology & Toxicology, 2015, 16, .	1.0	0
135	Rational design of a PKA-based sensor for cGMP. BMC Pharmacology & Toxicology, 2015, 16, .	1.0	Ο
136	Mechanism of Cyclic AMP Partial Agonism in Protein Kinase G (PKG). Biophysical Journal, 2016, 110, 514a.	0.2	0
137	Studies on the function of the different phosphoforms of cardiac troponin I. , 1997, , 281-284.		Ο
138	Leucine rich repeat kinase 2 (<scp>LRRK2</scp>) peptide modulators: Recent advances and future directions. Peptide Science, 2022, 114, .	1.0	0