Bing Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1013503/publications.pdf

Version: 2024-02-01

	87843	98753
4,904	38	67
citations	h-index	g-index
110	110	6413
docs citations	times ranked	citing authors
	citations 110	4,904 38 citations h-index 110 110

#	Article	IF	CITATIONS
1	Toxicity of perfluorooctanoic acid on zebrafish early embryonic development determined by single-cell RNA sequencing. Journal of Hazardous Materials, 2022, 427, 127888.	6.5	23
2	Heterogeneity effects of nanoplastics and lead on zebrafish intestinal cells identified by single-cell sequencing. Chemosphere, 2022, 289, 133133.	4.2	28
3	Novel insight into dissolved organic nitrogen (DON) transformation along wastewater treatment processes with special emphasis on endogenous-source DON. Environmental Research, 2022, 208, 112713.	3.7	2
4	Combined effects of arsenic and 2,2-dichloroacetamide on different cell populations of zebrafish liver. Science of the Total Environment, 2022, 821, 152961.	3.9	7
5	High concentrations of dissolved organic nitrogen and N-nitrosodimethylamine precursors in effluent from biological nutrient removal process with low dissolved oxygen conditions. Water Research, 2022, 216, 118336.	5.3	21
6	Regulation of exogenous acyl homoserine lactones on sludge settling performance: Monitoring via ultrasonic time-domain reflectometry. Chemosphere, 2022, 303, 135019.	4.2	3
7	Enhanced UV photoreductive destruction of perfluorooctanoic acid in the presence of alcohols: Synergistic mechanism of hydroxyl radical quenching and solvent effect. Applied Catalysis B: Environmental, 2022, 316, 121652.	10.8	17
8	Recovery of gut microbiota in mice exposed to tetracycline hydrochloride and their correlation with host metabolism. Ecotoxicology, 2021, 30, 1620-1631.	1.1	6
9	Ameliorative effect of graphene nanosheets against arsenic-induced toxicity in mice by oral exposure. Environmental Science and Pollution Research, 2021, 28, 21577-21588.	2.7	6
10	Highly Efficient Hydrated Electron Utilization and Reductive Destruction of Perfluoroalkyl Substances Induced by Intermolecular Interaction. Environmental Science & Enp.; Technology, 2021, 55, 3996-4006.	4.6	44
11	Combined effects of arsenic and palmitic acid on oxidative stress and lipid metabolism disorder in human hepatoma HepG2 cells. Science of the Total Environment, 2021, 769, 144849.	3.9	9
12	Effect of Influent Carbon-to-Nitrogen Ratios on the Production and Bioavailability of Microorganism-Derived Dissolved Organic Nitrogen (mDON) in Activated Sludge Systems. ACS ES&T Water, 2021, 1, 2037-2045.	2.3	5
13	Regulation of Photosynthesis in Bloom-Forming Cyanobacteria with the Simplest β-Diketone. Environmental Science & Technology, 2021, 55, 14173-14184.	4.6	24
14	Comparison of toxicity induced by EDTA-Cu after UV/H2O2 and UV/persulfate treatment: Species-specific and technology-dependent toxicity. Chemosphere, 2020, 240, 124942.	4.2	22
15	Effect of salinity on mature wastewater treatment biofilm microbial community assembly and metabolite characteristics. Science of the Total Environment, 2020, 711, 134437.	3.9	21
16	In-situ monitoring AHL-mediated quorum-sensing regulation of the initial phase of wastewater biofilm formation. Environment International, 2020, 135, 105326.	4.8	39
17	Single-Cell Sequencing Reveals Heterogeneity Effects of Bisphenol A on Zebrafish Embryonic Development. Environmental Science & Environmental Science	4.6	27
18	Low Concentrations of Silver Nanoparticles and Silver Ions Perturb the Antioxidant Defense System and Nitrogen Metabolism in N ₂ -Fixing Cyanobacteria. Environmental Science & Emp; Technology, 2020, 54, 15996-16005.	4.6	56

#	Article	IF	CITATIONS
19	In-situ monitoring of the unstable bacterial adhesion process during wastewater biofilm formation: A comprehensive study. Environment International, 2020, 140, 105722.	4.8	28
20	Influence of the digestive process on intestinal toxicity of polystyrene microplastics as determined by inÂvitro Caco-2 models. Chemosphere, 2020, 256, 127204.	4.2	66
21	Efficient Reductive Destruction of Perfluoroalkyl Substances under Self-Assembled Micelle Confinement. Environmental Science &	4.6	52
22	Single-Cell RNA Sequencing Reveals Size-Dependent Effects of Polystyrene Microplastics on Immune and Secretory Cell Populations from Zebrafish Intestines. Environmental Science & Environmental Scien	4.6	129
23	Combined effects of graphene oxide and zinc oxide nanoparticle on human A549 cells: bioavailability, toxicity and mechanisms. Environmental Science: Nano, 2019, 6, 635-645.	2.2	41
24	Insight into mature biofilm quorum sensing in full-scale wastewater treatment plants. Chemosphere, 2019, 234, 310-317.	4.2	20
25	Distribution characteristics of N-acyl homoserine lactones during the moving bed biofilm reactor biofilm development process: Effect of carbon/nitrogen ratio and exogenous quorum sensing signals. Bioresource Technology, 2019, 289, 121591.	4.8	23
26	Quorum sensing signaling distribution during the development of full-scale municipal wastewater treatment biofilms. Science of the Total Environment, 2019, 685, 28-36.	3.9	32
27	Comparison of cytotoxicity and membrane efflux pump inhibition in HepG2 cells induced by single-walled carbon nanotubes with different length and functional groups. Scientific Reports, 2019, 9, 7557.	1.6	13
28	Comparative analysis of toxicity reduction of wastewater in twelve industrial park wastewater treatment plants based on battery of toxicity assays. Scientific Reports, 2019, 9, 3751.	1.6	19
29	Differential influence of molybdenum disulfide at the nanometer and micron scales in the intestinal metabolome and microbiome of mice. Environmental Science: Nano, 2019, 6, 1594-1606.	2.2	21
30	Transformation of dissolved organic matter during full-scale treatment of integrated chemical wastewater: Molecular composition correlated with spectral indexes and acute toxicity. Water Research, 2019, 157, 472-482.	5.3	143
31	Influence of Iron on Cytotoxicity and Gene Expression Profiles Induced by Arsenic in HepG2 Cells. International Journal of Environmental Research and Public Health, 2019, 16, 4484.	1.2	5
32	Memory effect of arsenic-induced cellular response and its influences on toxicity of titanium dioxide nanoparticle. Scientific Reports, 2019, 9, 107.	1.6	3
33	Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2†cells. Chemosphere, 2019, 221, 333-341.	4.2	288
34	Is ozonation environmentally benign for reverse osmosis concentrate treatment? Four-level analysis on toxicity reduction based on organic matter fractionation. Chemosphere, 2018, 191, 971-978.	4.2	28
35	Insight into the characteristics, removal, and toxicity of effluent organic matter from a pharmaceutical wastewater treatment plant during catalytic ozonation. Scientific Reports, 2018, 8, 9581.	1.6	19
36	Aerobic Biodegradation Characteristic of Different Water-Soluble Azo Dyes. International Journal of Environmental Research and Public Health, 2018, 15, 35.	1.2	8

#	Article	IF	Citations
37	Rapid and complete dehalogenation of halonitromethanes in simulated gastrointestinal tract and its influence on toxicity. Chemosphere, 2018, 211, 1147-1155.	4.2	20
38	Hepatic transcriptomic responses in mice exposed to arsenic and different fat diet. Environmental Science and Pollution Research, 2017, 24, 10621-10629.	2.7	8
39	Differential toxicity of arsenic on renal oxidative damage and urinary metabolic profiles in normal and diabetic mice. Environmental Science and Pollution Research, 2017, 24, 17485-17492.	2.7	13
40	Mechanisms of microbial community structure and biofouling shifts under multivalent cations stress in membrane bioreactors. Journal of Hazardous Materials, 2017, 327, 89-96.	6.5	18
41	Cytotoxicity and Efflux Pump Inhibition Induced by Molybdenum Disulfide and Boron Nitride Nanomaterials with Sheetlike Structure. Environmental Science & Enp; Technology, 2017, 51, 10834-10842.	4.6	53
42	Facilitation of trace metal uptake in cells by inulin coating of metallic nanoparticles. Royal Society Open Science, 2017, 4, 170480.	1.1	13
43	Comparative toxicity of chloro- and bromo-nitromethanes in mice based on a metabolomic method. Chemosphere, 2017, 185, 20-28.	4.2	22
44	Comprehensive insights into microcystin-LR effects on hepatic lipid metabolism using cross-omics technologies. Journal of Hazardous Materials, 2016, 315, 126-134.	6.5	57
45	Nanomaterials-enabled water and wastewater treatment. NanoImpact, 2016, 3-4, 22-39.	2.4	286
46	Arsenic Metabolism and Toxicity Influenced by Ferric Iron in Simulated Gastrointestinal Tract and the Roles of Gut Microbiota. Environmental Science &	4.6	80
47	Influences of graphene on microbial community and antibiotic resistance genes in mouse gut as determined by high-throughput sequencing. Chemosphere, 2016, 144, 1306-1312.	4.2	49
48	Comparison of Cytotoxicity and Inhibition of Membrane ABC Transporters Induced by MWCNTs with Different Length and Functional Groups. Environmental Science & Environmental Science & 2016, 50, 3985-3994.	4.6	56
49	Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters. Nanotoxicology, 2016, 10, 597-606.	1.6	39
50	Influence of diet, vitamin, tea, trace elements and exogenous antioxidants on arsenic metabolism and toxicity. Environmental Geochemistry and Health, 2016, 38, 339-351.	1.8	34
51	Potential genotoxicity and risk assessment of a chlorinated flame retardant, Dechlorane Plus. Chemosphere, 2015, 135, 462-466.	4.2	21
52	Metagenomic insights into salinity effect on diversity and abundance of denitrifying bacteria and genes in an expanded granular sludge bed reactor treating high-nitrate wastewater. Chemical Engineering Journal, 2015, 277, 116-123.	6.6	110
53	Copper Oxide and Zinc Oxide Nanomaterials Act as Inhibitors of Multidrug Resistance Transport in Sea Urchin Embryos: Their Role as Chemosensitizers. Environmental Science & Environmental Science & 2015, 49, 5760-5770.	4.6	66
54	Metagenomic insights into tetracycline effects on microbial community and antibiotic resistance of mouse gut. Ecotoxicology, 2015, 24, 2125-2132.	1.1	46

#	Article	IF	CITATIONS
55	Correlation between microbial community structure and biofouling as determined by analysis of microbial community dynamics. Bioresource Technology, 2015, 197, 99-105.	4.8	80
56	Chemical and bioanalytical assessments on drinking water treatments by quaternized magnetic microspheres. Journal of Hazardous Materials, 2015, 285, 53-60.	6.5	10
57	Reduction in health risk induced by semi-volatile organic compounds and metals in a drinking water treatment plant. International Journal of Environmental Science and Technology, 2015, 12, 527-536.	1.8	7
58	Microalga Euglena as a bioindicator for testing genotoxic potentials of organic pollutants in Taihu Lake, China. Ecotoxicology, 2014, 23, 633-640.	1.1	25
59	Arsenic and selenium toxicity and their interactive effects in humans. Environment International, 2014, 69, 148-158.	4.8	322
60	A new polymer-based laccase for decolorization of AO7: Long-term storage and mediator reuse. Bioresource Technology, 2014, 164, 248-253.	4.8	15
61	New Strategy To Enhance Phosphate Removal from Water by Hydrous Manganese Oxide. Environmental Science & Environmental Science	4.6	148
62	Mice In Vivo Toxicity Studies for Monohaloacetamides Emerging Disinfection Byproducts Based on Metabolomic Methods. Environmental Science & Environmen	4.6	64
63	A comprehensive insight into bacterial virulence in drinking water using 454 pyrosequencing and Illumina high-throughput sequencing. Ecotoxicology and Environmental Safety, 2014, 109, 15-21.	2.9	74
64	Mouse organ coefficient and abnormal sperm rate analysis with exposure to tap water and source water in Nanjing reach of Yangtze River. Ecotoxicology, 2014, 23, 641-646.	1.1	24
65	Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere, 2014, 112, 1-8.	4.2	101
66	Short-term effects of Dechlorane Plus on the earthworm Eisenia fetida determined by a systems biology approach. Journal of Hazardous Materials, 2014, 273, 239-246.	6.5	60
67	Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice. Scientific Reports, 2014, 4, 6894.	1.6	96
68	Enhanced Removal of Fluoride by Polystyrene Anion Exchanger Supported Hydrous Zirconium Oxide Nanoparticles. Environmental Science & Environmental Sci	4.6	198
69	Impact of Iron Precipitant on Toxicity of Arsenic in Water: A Combined in Vivo and in Vitro Study. Environmental Science & Environmental Science & Env	4.6	21
70	Evaluation of the Toxic Effects of Municipal Wastewater Effluent on Mice Using Omic Approaches. Environmental Science & Enviro	4.6	19
71	Correlation between TCDD acute toxicity and aryl hydrocarbon receptor structure for different mammals. Ecotoxicology and Environmental Safety, 2013, 89, 84-88.	2.9	7
72	Hepatic gene expression analysis of mice exposed to raw water from Meiliang Bay, Lake Taihu, China. Journal of Applied Toxicology, 2013, 33, 1416-1423.	1.4	2

#	Article	IF	Citations
73	Sewage treatment plant serves as a hot-spot reservoir of integrons and gene cassettes. Journal of Environmental Biology, 2013, 34, 391-9.	0.2	25
74	Evaluating the Transcriptomic and Metabolic Profile of Mice Exposed to Source Drinking Water. Environmental Science & Environm	4.6	27
75	Responses of Mouse Liver to Dechlorane Plus Exposure by Integrative Transcriptomic and Metabonomic Studies. Environmental Science & Environmental Scie	4.6	66
76	Combined toxicity of cadmium and lead on the earthworm Eisenia fetida (Annelida, Oligochaeta). Ecotoxicology and Environmental Safety, 2012, 81, 122-126.	2.9	48
77	Chronic exposure to contaminated drinking water stimulates PPAR expression in mice livers. Chemosphere, 2012, 88, 407-412.	4.2	5
78	Health risk assessment of polycyclic aromatic hydrocarbons in the source water and drinking water of China: Quantitative analysis based on published monitoring data. Science of the Total Environment, 2011, 410-411, 112-118.	3.9	174
79	Assessing the toxicity of ingested Taihu Lake water on mice via hepatic histopathology and matrix metalloproteinase expression. Ecotoxicology, 2011, 20, 1047-1056.	1.1	6
80	NMR-based metabolic profiling for serum of mouse exposed to source water. Ecotoxicology, 2011, 20, 1065-1070.	1.1	3
81	Comparative analysis of binding affinities between styrene and mammalian CYP2E1 by bioinformatics approaches. Ecotoxicology, 2011, 20, 1041-1046.	1.1	4
82	Reproductive toxicity in male mice exposed to Nanjing City tap water. Ecotoxicology, 2011, 20, 1057-1064.	1.1	2
83	Occurrence, abundance and elimination of class 1 integrons in one municipal sewage treatment plant. Ecotoxicology, $2011, 20, 968-973$.	1.1	39
84	Risk assessment of polycyclic aromatic hydrocarbons in aquatic ecosystems. Ecotoxicology, 2011, 20, 1124-1130.	1.1	56
85	Preliminary evaluation of gene expression profiles in liver of mice exposed to Taihu Lake drinking water for 90Âdays. Ecotoxicology, 2011, 20, 1071-1077.	1.1	4
86	Serum biochemical analysis to indicate pathogenic risk on mouse Mus musculus exposure to source of drinking water. Ecotoxicology, 2011, 20, 1078-1082.	1.1	1
87	Integration of gene chip and topological network techniques to screen a candidate biomarker gene (CBG) for predication of the source water carcinogenesis risks on mouse Mus musculus. Ecotoxicology, 2011, 20, 1026-1032.	1.1	2
88	Efficient production of <scp>D</scp> â€glucosaminic acid from <scp>D</scp> â€glucosamine by <i>Pseudomonas putida</i> GNA5. Biotechnology Progress, 2011, 27, 32-37.	1.3	4
89	A metabonomic analysis on health effects of drinking water on male mice (Mus musculus). Journal of Hazardous Materials, 2011, 190, 515-519.	6.5	7
90	Metabolic profiles in serum of mouse after chronic exposure to drinking water. Human and Experimental Toxicology, 2011, 30, 1088-1095.	1.1	3

#	Article	IF	Citations
91	Health Risk from Exposure of Organic Pollutants Through Drinking Water Consumption in Nanjing, China. Bulletin of Environmental Contamination and Toxicology, 2010, 84, 46-50.	1.3	90
92	Toxicity of purified terephthalic acid manufacturing wastewater on reproductive system of male mice (Mus musculus). Journal of Hazardous Materials, 2010, 176, 300-305.	6.5	35
93	Genomic expression profiles in liver of mice exposed to purified terephthalic acid manufacturing wastewater. Journal of Hazardous Materials, 2010, 181, 1121-1126.	6.5	15
94	Influences of hydraulic loading rate on SVOC removal and microbial community structure in drinking water treatment biofilters. Journal of Hazardous Materials, 2010, 178, 652-657.	6.5	25
95	Effects of Yangtze River source water on genomic polymorphisms of male mice detected by RAPD. Human and Experimental Toxicology, 2010, 29, 113-120.	1.1	3
96	Computational studies of interactions between endocrine disrupting chemicals and androgen receptor of different vertebrate species. Chemosphere, 2010, 80, 535-541.	4.2	18
97	Gene expression profiles in liver of mouse after chronic exposure to drinking water. Journal of Applied Toxicology, 2009, 29, 569-577.	1.4	16
98	Semi-volatile organic compounds and trace elements in the Yangtze River source of drinking water. Ecotoxicology, 2009, 18, 707-714.	1.1	42
99	Class 1 integronase gene and tetracycline resistance genes tetA and tetC in different water environments of Jiangsu Province, China. Ecotoxicology, 2009, 18, 652-660.	1.1	83
100	Extracellular proteomic analysis for degradation of PAHs in source of drinking water with fusant strains. Ecotoxicology, 2009, 18, 736-741.	1.1	2
101	Toxicity of the Yangtze River source of drinking water on reproductive system of male mice (Mus) Tj ETQq $1\ 1\ 0.7$	'84314 rgl	BT/Qverlock
102	Effects of the Yangtze River source of drinking water on metabolites of Mus musculus. Ecotoxicology, 2009, 18, 722-728.	1.1	8
103	Transcriptional toxicity of the Yangtze River source water on mouse (Mus musculus) detected by cDNA microarray. Ecotoxicology, 2009, 18, 715-721.	1.1	12
104	Degradation of benzo(a)pyrene in Yangtze River source water with functional strains. Ecotoxicology, 2009, 18, 742-747.	1.1	9
105	Identification of protoplast fusion strain Fhhh by randomly amplified polymorphic DNA. World Journal of Microbiology and Biotechnology, 2009, 25, 1181-1188.	1.7	9
106	Preliminary Risk Assessment of Trace Metal Pollution in Surface Water from Yangtze River in Nanjing Section, China. Bulletin of Environmental Contamination and Toxicology, 2009, 82, 405-409.	1.3	328
107	Multivariate statistical study of organic pollutants in Nanjing reach of Yangtze River. Journal of Hazardous Materials, 2009, 169, 1093-1098.	6.5	55
108	Genetic analysis of protoplast fusant Xhhh constructed for pharmaceutical wastewater treatment. Bioresource Technology, 2009, 100, 1910-1914.	4.8	16

#	Article	lF	CITATIONS
109	In silico predication of nuclear hormone receptors for organic pollutants by homology modeling and molecular docking. Toxicology Letters, 2009, 191, 69-73.	0.4	35
110	A Comparative Analysis of Environmental Quality Assessment Methods for Heavy Metal-Contaminated Soils. Pedosphere, 2008, 18, 344-352.	2.1	51