
Hirotaka Matsuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10135/publications.pdf Version: 2024-02-01

ΗΙΡΟΤΛΚΑ ΜΑΤSUO

#	Article	IF	CITATIONS
1	Urate Transporter ABCG2 Function and Asymptomatic Hyperuricemia: A Retrospective Cohort Study of CKD Progression. American Journal of Kidney Diseases, 2023, 81, 134-144.e1.	2.1	8
2	Mendelian Randomisation Study of Smoking, Alcohol, and Coffee Drinking in Relation to Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, 267-282.	1.5	21
3	Dairy Intake and Parkinson's Disease: A Mendelian Randomization Study. Movement Disorders, 2022, 37, 857-864.	2.2	15
4	A meta-analysis of genome-wide association studies using Japanese and Taiwanese has revealed novel loci associated with gout susceptibility. Human Cell, 2022, 35, 767.	1.2	1
5	Genome-wide meta-analysis between renal overload type and renal underexcretion type of clinically defined gout in Japanese populations. Molecular Genetics and Metabolism, 2022, 136, 186-189.	0.5	6
6	Coffee Consumption Reduces Gout Risk Independently of Serum Uric Acid Levels: Mendelian Randomization Analyses Across Ancestry Populations. ACR Open Rheumatology, 2022, 4, 534-539.	0.9	7
7	OAT10/SLC22A13 Acts as a Renal Urate Re-Absorber: Clinico-Genetic and Functional Analyses With Pharmacological Impacts. Frontiers in Pharmacology, 2022, 13, 842717.	1.6	9
8	The Interaction between <scp> <i>HLAâ€ÐRB1</i> </scp> and Smoking in Parkinson's Disease Revisited. Movement Disorders, 2022, 37, 1929-1937.	2.2	4
9	OUP accepted manuscript. Rheumatology, 2021, , .	0.9	7
10	First clinical practice guideline for renal hypouricaemia: a rare disorder that aided the development of urate-lowering drugs for gout. Rheumatology, 2021, 60, 3961-3963.	0.9	10
11	Substantial anti-gout effect conferred by common and rare dysfunctional variants of <i>URAT1/SLC22A12</i> . Rheumatology, 2021, 60, 5224-5232.	0.9	10
12	An X chromosome-wide meta-analysis based on Japanese cohorts revealed that non-autosomal variations are associated with serum urate. Rheumatology, 2021, 60, 4430-4432.	0.9	2
13	Porphyrin accumulation in humans with common dysfunctional variants of ABCG2, a porphyrin transporter: potential association with acquired photosensitivity. Human Cell, 2021, 34, 1082-1086.	1.2	4
14	A Proposal for Practical Diagnosis of Renal Hypouricemia: Evidenced from Genetic Studies of Nonfunctional Variants of URAT1/SLC22A12 among 30,685 Japanese Individuals. Biomedicines, 2021, 9, 1012.	1.4	8
15	Increase of serum uric acid levels associated with APOE ε2 haplotype: a clinico-genetic investigation and in vivo approach. Human Cell, 2021, 34, 1727-1733.	1.2	0
16	Both variants of A1CF and BAZ1B genes are associated with gout susceptibility: a replication study and meta-analysis in a Japanese population. Human Cell, 2021, 34, 293-299.	1.2	2
17	Pathophysiological impact of dysfunctional common and rare variants of urate transporter ABCG2 on urate-related diseases. Denki Eido, 2021, 65, 1-5.	0.0	0
18	Sub internal limiting membrane hemorrhage followed by bilateral optic disc hemorrhage in Kikuchi-Fujimoto disease: a case report. BMC Ophthalmology, 2021, 21, 355.	0.6	1

Hirotaka Matsuo

#	Article	IF	CITATIONS
19	Dysfunctional missense variant of <i>OAT10/SLC22A13</i> decreases gout risk and serum uric acid levels. Annals of the Rheumatic Diseases, 2020, 79, 164-166.	0.5	26
20	Identification of a dysfunctional splicing mutation in the SLC22A12/URAT1 gene causing renal hypouricaemia type 1: a report on two families. Rheumatology, 2020, 59, 3988-3990.	0.9	5
21	Identification of GLUT12/SLC2A12 as a urate transporter that regulates the blood urate level in hyperuricemia model mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18175-18177.	3.3	20
22	P0169DYSFUNCTION OF ABCG2, URATE TRANSPORTER, IS RELATED WITH UROLITHIASIS. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	0
23	The influence of a noisy environment on hearing impairment and tinnitus: The hearing outcomes of 50-year-old male Japan ground self-defense force personnel. Auris Nasus Larynx, 2020, 47, 931-937.	0.5	0
24	Dysfunctional ABCG2 gene polymorphisms are associated with serum uric acid levels and all-cause mortality in hemodialysis patients. Human Cell, 2020, 33, 559-568.	1.2	7
25	Genomic dissection of 43 serum urate-associated loci provides multiple insights into molecular mechanisms of urate control. Human Molecular Genetics, 2020, 29, 923-943.	1.4	40
26	A common variant of LDL receptorÂrelated protein 2 (LRP2) gene is associated with gout susceptibility: a meta-analysis in a Japanese population. Human Cell, 2020, 33, 303-307.	1.2	6
27	Subtype-specific gout susceptibility loci and enrichment of selection pressure on ABCG2 and ALDH2 identified by subtype genome-wide meta-analyses of clinically defined gout patients. Annals of the Rheumatic Diseases, 2020, 79, 657-665.	0.5	24
28	Abstract 2484: Development of a gene expression database of pancreatic ductal adenocarcinoma cases by NGS-combined HiCEP to identify tumor markers. , 2020, , .		0
29	Genome-wide association study revealed novel loci which aggravate asymptomatic hyperuricaemia into gout. Annals of the Rheumatic Diseases, 2019, 78, 1430-1437.	0.5	73
30	Functional Characterization of Clinically-Relevant Rare Variants in ABCG2 Identified in a Gout and Hyperuricemia Cohort. Cells, 2019, 8, 363.	1.8	46
31	Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals. Communications Biology, 2019, 2, 115.	2.0	66
32	Clinical practice guideline for renal hypouricemia (1st edition). Human Cell, 2019, 32, 83-87.	1.2	56
33	OP0048â€GENOME-WIDE META-ANALYSIS REVEALED MULTIPLE NOVEL LOCI ASSOCIATED WITH SERUM URIC ACIDLEVELS IN JAPANESE. , 2019, , .		0
34	OP0047â€A GENOME-WIDE ASSOCIATION STUDY IDENTIFIED NOVEL LOCI ASSOCIATED WITH THE PROGRESSION FROM ASYMPTOMATIC HYPERURICEMIA TO GOUT. , 2019, , .		0
35	Gout. Nature Reviews Disease Primers, 2019, 5, 69.	18.1	326
36	A common variant of MAF/c-MAF, transcriptional factor gene in the kidney, is associated with gout susceptibility. Human Cell, 2018, 31, 10-13.	1.2	7

#	Article	IF	CITATIONS
37	Effects of Osthol Isolated from Cnidium monnieri Fruit on Urate Transporter 1. Molecules, 2018, 23, 2837.	1.7	11
38	Common variant of BCAS3 is associated with gout risk in Japanese population: the first replication study after gout GWAS in Han Chinese. BMC Medical Genetics, 2018, 19, 96.	2.1	4
39	Development of" Clinical Practice Guideline for Renal Hypouricemia― (1st edition) . Gout and Nucleic Acid Metabolism, 2018, 42, 1-6.	0.0	0
40	å°¿ć,ãf^ãf©ãf³ã,¹ãfãf¼ã,¿ãf¼é°ä¼å<i>ABCG2</i>ã®ãf¬ã,¢ãfãfªã,¢ãf³ãf^ã•ã,³ãf¢ãf³ãfãfªã,¢ãf³ã	f^ã ë匜 §~	ã«ç 0 ->風`ã®ãf
41	Uric acid ameliorates indomethacinâ€induced enteropathy in mice through its antioxidant activity. Journal of Gastroenterology and Hepatology (Australia), 2017, 32, 1839-1845.	1.4	19
42	GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes. Annals of the Rheumatic Diseases, 2017, 76, 869-877.	0.5	114
43	Multiple common and rare variants of <i>ABCG2</i> cause gout. RMD Open, 2017, 3, e000464.	1.8	46
44	Functional non-synonymous variants of ABCG2 and gout risk. Rheumatology, 2017, 56, 1982-1992.	0.9	62
45	Independent effects of ADH1B and ALDH2 common dysfunctional variants on gout risk. Scientific Reports, 2017, 7, 2500.	1.6	16
46	Meta-analysis confirms an association between gout and a common variant of LRRC16A locus. Modern Rheumatology, 2017, 27, 553-555.	0.9	2
47	Identification of Febuxostat as a New Strong ABCG2 Inhibitor: Potential Applications and Risks in Clinical Situations. Frontiers in Pharmacology, 2016, 7, 518.	1.6	93
48	Association Between Serum Uric Acid Levels/Hyperuricemia and Hypertension Among 85,286 Japanese Workers. Journal of Clinical Hypertension, 2016, 18, 53-59.	1.0	33
49	Expression of a human NPT1/SLC17A1 missense variant which increases urate export. Nucleosides, Nucleotides and Nucleic Acids, 2016, 35, 536-542.	0.4	11
50	Common variant of PDZ domain containing 1 (PDZK1) gene is associated with gout susceptibility: A replication study and meta-analysis in Japanese population. Drug Metabolism and Pharmacokinetics, 2016, 31, 464-466.	1.1	20
51	Identification of rs671, a common variant of ALDH2, as a gout susceptibility locus. Scientific Reports, 2016, 6, 25360.	1.6	36
52	NRF2 Is a Key Target for Prevention of Noise-Induced Hearing Loss by Reducing Oxidative Damage of Cochlea. Scientific Reports, 2016, 6, 19329.	1.6	91
53	Hyperuricemia in acute gastroenteritis is caused by decreased urate excretion via ABCG2. Scientific Reports, 2016, 6, 31003.	1.6	42
54	Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes. Annals of the Rheumatic Diseases, 2016, 75, 652-659.	0.5	144

#	Article	IF	CITATIONS
55	The effects of URAT1/SLC22A12 nonfunctional variants,R90H and W258X, on serum uric acid levels and gout/hyperuricemia progression. Scientific Reports, 2016, 6, 20148.	1.6	33
56	Up-Regulation of Antioxidant Proteins in the Plasma Proteome during Saturation Diving: Unique Coincidence under Hypobaric Hypoxia. PLoS ONE, 2016, 11, e0163804.	1.1	13
57	Title is missing!. Gout and Nucleic Acid Metabolism, 2016, 40, 53.	0.0	0
58	Title is missing!. Gout and Nucleic Acid Metabolism, 2016, 40, 50-51.	0.0	0
59	ABCG2 variant has opposing effects on onset ages of Parkinson's disease and gout. Annals of Clinical and Translational Neurology, 2015, 2, 302-306.	1.7	28
60	High levels of <scp>DJ</scp> â€1 protein and isoelectric point 6.3 isoform in sera of breast cancer patients. Cancer Science, 2015, 106, 938-943.	1.7	21
61	Functional identification of SLC43A3 as an equilibrative nucleobase transporter involved in purine salvage in mammals. Scientific Reports, 2015, 5, 15057.	1.6	47
62	Carrier frequency of the GJB2 mutations that cause hereditary hearing loss in the Japanese population. Journal of Human Genetics, 2015, 60, 613-617.	1.1	19
63	Common variant of ALPK1 is not associated with gout: a replication study. Human Cell, 2015, 28, 1-4.	1.2	9
64	NPT1/SLC17A1 Is a Renal Urate Exporter in Humans and Its Common Gainâ€ofâ€Function Variant Decreases the Risk of Renal Underexcretion Gout. Arthritis and Rheumatology, 2015, 67, 281-287.	2.9	66
65	èŽå°¿é,排泄è¼,é€ä½"é₽ä¼åNPT1/SLC17A1ã®æ©Ÿèf½ç₽å¾—åž‹å‱ç•°ãī痛風発症ã«ä¿è-çš"ã«åf	ã : G out an	ıd Nucleic Aci
66	Identification of a Hypouricemia Patient with SLC2A9 R380W, A Pathogenic Mutation for Renal Hypouricemia Type 2. Nucleosides, Nucleotides and Nucleic Acids, 2014, 33, 261-265.	0.4	11
67	A Common Variant of Organic Anion Transporter 4 (OAT4/SLC22A11) Gene Is Associated with Renal Underexcretion Type Gout. Drug Metabolism and Pharmacokinetics, 2014, 29, 208-210.	1.1	43
68	Ethnic Differences in ATP-binding Cassette Transporter, Sub-family G, Member 2 (ABCG2/BCRP): Genotype Combinations and Estimated Functions. Drug Metabolism and Pharmacokinetics, 2014, 29, 490-492.	1.1	28
69	ABCG2 Dysfunction Increases the Risk of Renal Overload Hyperuricemia. Nucleosides, Nucleotides and Nucleic Acids, 2014, 33, 266-274.	0.4	33
70	Common Variant of PDZK1, Adaptor Protein Gene of Urate Transporters, is Not Associated with Gout. Journal of Rheumatology, 2014, 41, 2330-2331.	1.0	7
71	A common variant of leucine-rich repeat-containing 16A (LRRC16A) gene is associated with gout susceptibility. Human Cell, 2014, 27, 1-4.	1.2	33
72	Common variants of a urate-associated gene LRP2 are not associated with gout susceptibility. Rheumatology International, 2014, 34, 473-476.	1.5	9

#	Article	IF	CITATIONS
73	ABCG2 Dysfunction Increases Serum Uric Acid by Decreased Intestinal Urate Excretion. Nucleosides, Nucleotides and Nucleic Acids, 2014, 33, 275-281.	0.4	60
74	Common Variants of cGKII/PRKG2 Are Not Associated with Gout Susceptibility. Journal of Rheumatology, 2014, 41, 1395-1397.	1.0	4
75	ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload. Scientific Reports, 2014, 4, 3755.	1.6	125
76	Common dysfunctional variants of ABCG2 have stronger impact on hyperuricemia progression than typical environmental risk factors. Scientific Reports, 2014, 4, 5227.	1.6	70
77	ASSOCIATIONS BETWEEN BODY MASS INDEX AND SERUM URIC ACID LEVELS IN A JAPANESE POPULATION WERE SIGNIFICANTLY MODIFIED BY LRP2 rs2544390. Nagoya Journal of Medical Science, 2014, 76, 333-9.	0.6	6
78	A common missense variant of monocarboxylate transporter 9 (MCT9/SLC16A9) gene is associated with renal overload gout, but not with all gout susceptibility. Human Cell, 2013, 26, 133-136.	1.2	48
79	Increased xCT Expression Correlates With Tumor Invasion and Outcome in Patients With Glioblastomas. Neurosurgery, 2013, 72, 33-41.	0.6	102
80	Common dysfunctional variants in ABCG2 are a major cause of early-onset gout. Scientific Reports, 2013, 3, 2014.	1.6	105
81	No association between MTHFR C677T and serum uric acid levels among Japanese with ABCG2 126QQ and SLC22A12 258WW. Nagoya Journal of Medical Science, 2013, 75, 93-100.	0.6	1
82	Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nature Communications, 2012, 3, 764.	5.8	489
83	Significant interaction between LRP2 rs2544390 in intron 1 and alcohol drinking for serum uric acid levels among a Japanese population. Gene, 2012, 503, 131-136.	1.0	23
84	l-Leucine induces growth arrest and persistent ERK activation in glioma cells. Amino Acids, 2012, 43, 717-724.	1.2	2
85	ABCG2 is a High-Capacity Urate Transporter and its Genetic Impairment Increases Serum Uric Acid Levels in Humans. Nucleosides, Nucleotides and Nucleic Acids, 2011, 30, 1091-1097.	0.4	70
86	Significant association of serum uric acid levels with SLC2A9 rs11722228 among a Japanese population. Molecular Genetics and Metabolism, 2011, 103, 378-382.	0.5	22
87	ABCG2/BCRP Dysfunction as a Major Cause of Gout. Nucleosides, Nucleotides and Nucleic Acids, 2011, 30, 1117-1128.	0.4	24
88	Pathogenic GLUT9 Mutations Causing Renal Hypouricemia Type 2 (RHUC2). Nucleosides, Nucleotides and Nucleic Acids, 2011, 30, 1105-1111.	0.4	38
89	LAT1 expression in non-small-cell lung carcinomas: Analyses by semiquantitative reverse transcription-PCR (237 cases) and immunohistochemistry (295 cases). Lung Cancer, 2010, 68, 58-65.	0.9	46
90	Transient degradation of myelin basic protein in the rat hippocampus following acute carbon monoxide poisoning. Neuroscience Research, 2010, 68, 232-240.	1.0	7

#	Article	IF	CITATIONS
91	Common Defects of ABCG2, a High-Capacity Urate Exporter, Cause Gout: A Function-Based Genetic Analysis in a Japanese Population. Science Translational Medicine, 2009, 1, 5ra11.	5.8	334
92	Mutations in Glucose Transporter 9 Gene SLC2A9 Cause Renal Hypouricemia. American Journal of Human Genetics, 2008, 83, 744-751.	2.6	317
93	Mutations in Glucose Transporter 9 Gene SLC2A9 Cause Renal Hypouricemia. American Journal of Human Genetics, 2008, 83, 795.	2.6	6
94	Up-regulation of L type amino acid transporter 1 after spinal cord injury in rats. Acta Neurochirurgica Supplementum, 2008, 102, 385-388.	0.5	4
95	Activation of a system A amino acid transporter, ATA1/SLC38A1, in human hepatocellular carcinoma and preneoplastic liver tissues. International Journal of Oncology, 2007, , .	1.4	17
96	Effectiveness of narrowâ€band ultravioletâ€B phototherapy for prevention of intimal hyperplasia in a rat carotid balloon injury model. Lasers in Surgery and Medicine, 2007, 39, 659-666.	1.1	4
97	Long-term Effects of UV Light on Contractility of Rat Arteries In Vivo¶. Photochemistry and Photobiology, 2007, 78, 372-376.	1.3	0
98	Expression of LAT1 predicts risk of progression of transitional cell carcinoma of the upper urinary tract. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2007, 451, 681-690.	1.4	68
99	LAT1 expression in normal lung and in atypical adenomatous hyperplasia and adenocarcinoma of the lung. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2006, 448, 142-150.	1.4	41
100	L-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. International Journal of Cancer, 2006, 119, 484-492.	2.3	211
101	High expression of L-type amino acid transporter 1 in infiltrating glioma cells. Brain Tumor Pathology, 2005, 22, 89-91.	1.1	55
102	Mutations in Human Urate Transporter 1 Gene in Presecretory Reabsorption Defect Type of Familial Renal Hypouricemia. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 2169-2174.	1.8	52
103	High affinity d- and l-serine transporter Asc-1: cloning and dendritic localization in the rat cerebral and cerebellar cortices. Neuroscience Letters, 2004, 358, 123-126.	1.0	65
104	Long-term Effects of UV Light on Contractility of Rat Arteries In Vivo¶. Photochemistry and Photobiology, 2003, 78, 372.	1.3	1
105	Identification of a Novel Na+-independent Acidic Amino Acid Transporter with Structural Similarity to the Member of a Heterodimeric Amino Acid Transporter Family Associated with Unknown Heavy Chains. Journal of Biological Chemistry, 2002, 277, 21017-21026.	1.6	63
106	The Human T-Type Amino Acid Transporter-1: Characterization, Gene Organization, and Chromosomal Location. Genomics, 2002, 79, 95-103.	1.3	119
107	Somatosensory evoked potential in neurosyphilis. Journal of Neurology, 2002, 249, 1220-1222.	1.8	5
108	Molecular identification of a renal urate–anion exchanger that regulates blood urate levels. Nature, 2002, 417, 447-452.	13.7	1,270

7

Hirotaka Matsuo

#	Article	IF	CITATIONS
109	The Role of CD98 in Astrocytic Neoplasms. Human Cell, 2002, 15, 25-31.	1.2	22
110	Human cystine/glutamate transporter: cDNA cloning and upregulation by oxidative stress in glioma cells. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1512, 335-344.	1.4	130
111	Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1514, 291-302.	1.4	604
112	Human cystinuria-related transporter: Localization and functional characterization. Kidney International, 2001, 59, 1821-1833.	2.6	48
113	Expression Cloning of a Na+-independent Aromatic Amino Acid Transporter with Structural Similarity to H+/Monocarboxylate Transporters. Journal of Biological Chemistry, 2001, 276, 17221-17228.	1.6	211
114	Identification and Characterization of a Novel Member of the Heterodimeric Amino Acid Transporter Family Presumed to be Associated with an Unknown Heavy Chain. Journal of Biological Chemistry, 2001, 276, 49390-49399.	1.6	69
115	Expression of a system L neutral amino acid transporter at the blood–brain barrier. NeuroReport, 2000, 11, 3507-3511.	0.6	128
116	Amino acid transporters: molecular structure and physiological roles. Nephrology Dialysis Transplantation, 2000, 15, 9-10.	0.4	17
117	Transport Properties of a System y+L Neutral and Basic Amino Acid Transporter. Journal of Biological Chemistry, 2000, 275, 20787-20793.	1.6	87
118	Identification and Characterization of a Na+-independent Neutral Amino Acid Transporter That Associates with the 4F2 Heavy Chain and Exhibits Substrate Selectivity for Small Neutral d- and I-Amino Acids. Journal of Biological Chemistry, 2000, 275, 9690-9698.	1.6	253
119	Cloning and characterization of a human brain Na + -independent transporter for small neutral amino acids that transports d -serine with high affinity. Neuroscience Letters, 2000, 287, 231-235.	1.0	99
120	Mutational analysis of the anion exchanger 3 gene in familial paroxysmal dystonic choreoathetosis linked to chromosome 2q. , 1999, 88, 733-737.		14
121	Familial Paroxysmal Dystonic Choreoathetosis. Archives of Neurology, 1999, 56, 721.	4.9	45
122	Possible Mechanisms of Vascular Relaxation Induced by Pulsedâ€UV Laser. Photochemistry and Photobiology, 1998, 68, 388-393.	1.3	9
123	Relief of vasospasm by intravascular ultraviolet irradiation. , 1998, , .		0