Di Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10134741/publications.pdf

Version: 2024-02-01

		1040056	1125743	
11	499	9	13	
papers	citations	h-index	g-index	
13	13	13	688	
all docs	docs citations	times ranked	citing authors	

#	Article	lF	CITATION
1	Progranulin improves neural development via the PI3K/Akt/GSK-3β pathway in the cerebellum of a VPA-induced rat model of ASD. Translational Psychiatry, 2022, 12, 114.	4.8	17
2	Abnormal spatiotemporal expression pattern of progranulin and neurodevelopment impairment in VPA-induced ASD rat model. Neuropharmacology, 2021, 196, 108689.	4.1	8
3	Regulation of progranulin expression and location by sortilin in oxygen–glucose deprivation/reoxygenation injury. Neuroscience Letters, 2020, 738, 135394.	2.1	4
4	TRPV4 channels stimulate Ca2+-induced Ca2+ release in mouse neurons and trigger endoplasmic reticulum stress after intracerebral hemorrhage. Brain Research Bulletin, 2019, 146, 143-152.	3.0	39
5	Protective Effects of Notoginsenoside R1 via Regulation of the PI3K-Akt-mTOR/JNK Pathway in Neonatal Cerebral Hypoxic–Ischemic Brain Injury. Neurochemical Research, 2018, 43, 1210-1226.	3.3	72
6	IRE1α inhibition decreased TXNIP/NLRP3 inflammasome activation through miR-17-5p after neonatal hypoxic–ischemic brain injury in rats. Journal of Neuroinflammation, 2018, 15, 32.	7.2	131
7	A Developmental Study of Abnormal Behaviors and Altered GABAergic Signaling in the VPA-Treated Rat Model of Autism. Frontiers in Behavioral Neuroscience, 2018, 12, 182.	2.0	68
8	Notoginsenoside R1 Alleviates Oxygen–Glucose Deprivation/Reoxygenation Injury by Suppressing Endoplasmic Reticulum Calcium Release via PLC. Scientific Reports, 2017, 7, 16226.	3.3	18
9	Sub-Acute Toxicity Study of Graphene Oxide in the Sprague-Dawley Rat. International Journal of Environmental Research and Public Health, 2016, 13, 1149.	2.6	25
10	Notoginsenoside R1 Protects against Neonatal Cerebral Hypoxic-Ischemic Injury through Estrogen Receptor-Dependent Activation of Endoplasmic Reticulum Stress Pathways. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 591-605.	2.5	54
11	Treatment with Z-Ligustilide, a Component of <i>Angelica sinensis</i> , Reduces Brain Injury after a Subarachnoid Hemorrhage in Rats. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 663-672.	2.5	54