Simonetta TurtÃ¹

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10134537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The DEMO magnet system – Status and future challenges. Fusion Engineering and Design, 2022, 174, 112971.	1.9	37
2	Electromagnetic Analysis of DTT Poloidal Field Coils During an Electrical Transient. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	1
3	Engineering and Structural Assessment for the Design of the DTT Central Solenoid. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	1
4	DTT: A Challenging Framework for a Sound Superconducting Magnets Design. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	4
5	Updated Structural Assessment of the DTT Poloidal Field Coils. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	2
6	Analysis of the Thermal-Hydraulic Effects of a Plasma Disruption on the DTT TF Magnets. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-7.	1.7	8
7	Design Studies, Magnetic Calculations and Structural Assessment For the DTT Central Solenoid. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	5
8	Design and Characterization of the Interlayer Joint Between Low-Field Nb ₃ Sn Conductors of a Layer Wound DEMO TF Coil. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-7.	1.7	3
9	Thermal-hydraulic analysis of the DTT CS and PF pulsed coil performance during AC operation. Fusion Engineering and Design, 2021, 173, 112836.	1.9	2
10	Structural Assessment of the DTT Poloidal Field Coil System. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	5
11	Thermal-Hydraulic Analysis of the DTT Toroidal Field Magnets in DC Operation. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	8
12	Magnetostructural Calculations and Design Study of the DTT Central Solenoid. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	9
13	Structural Assessment Procedure of the Toroidal Field Magnet System for the Divertor Tokamak Test. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	6
14	Advance in the conceptual design of the European DEMO magnet system. Superconductor Science and Technology, 2020, 33, 044013.	3.5	38
15	Structural assessment of TF superconducting magnet of the DTT device. Procedia Structural Integrity, 2019, 24, 898-905.	0.8	2
16	Performance Analysis of the NbTi PF Coils for the EU DEMO Fusion Reactor. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	6
17	The DRYSMES4GRID Project: Development of a 500 kJ/200 kW Cryogen-Free Cooled SMES Demonstrator Based on MgB2. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	16
18	Mechanical Analysis of the ENEA TF Coil Proposal for the EU DEMO Fusion Reactor. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	4

SIMONETTA TURTÃ¹

#	Article	IF	CITATIONS
19	Study of a Universal Power SMES Compensator for LV Distribution Grid. , 2018, , .		4
20	Progress in the design of the superconducting magnets for the EU DEMO. Fusion Engineering and Design, 2018, 136, 1597-1604.	1.9	67
21	DTT device: Conceptual design of the superconducting magnet system. Fusion Engineering and Design, 2017, 122, 299-312.	1.9	21
22	Performance analysis of a graded winding pack design for the EU DEMO TF coil in normal and off-normal conditions. Fusion Engineering and Design, 2017, 124, 45-48.	1.9	15
23	Design, Manufacture, and Test of an 80 kA-Class Nb3Sn Cable-In-Conduit Conductor With Rectangular Geometry and Distributed Pressure Relief Channels. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-6.	1.7	39
24	Development of a Thermal-Hydraulic Model for the European DEMO TF Coil. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-6.	1.7	23
25	Overview of Progress on the EU DEMO Reactor Magnet System Design. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	46
26	Detailed design of the large-bore 8 T superconducting magnet for the NAFASSY test facility. Superconductor Science and Technology, 2015, 28, 034005.	3.5	18
27	Assessment Studies and Manufacturing Trials for the Conductors of DEMO TF Coils. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	7
28	LTS and HTS high current conductor development for DEMO. Fusion Engineering and Design, 2015, 96-97, 77-82.	1.9	22
29	A new meshless approach to map electromagnetic loads for FEM analysis on DEMO TF coil system. Fusion Engineering and Design, 2015, 100, 226-238.	1.9	11
30	Design of Large Size, Force Flow Superconductors for DEMO TF Coils. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1.7	29
31	Overview of Conductor Production for ITER Toroidal Field Magnet in Korea. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.7	5
32	ITER and JT-60SA Conductor Production at ICAS. IEEE Transactions on Applied Superconductivity, 2013, 23, 4200904-4200904.	1.7	13
33	Test of the ENEA Joint With a NbTi Large CiC Conductor. IEEE Transactions on Applied Superconductivity, 2013, 23, 4200705-4200705.	1.7	0
34	A New European Production Line for CIC Conductors. IEEE Transactions on Applied Superconductivity, 2012, 22, 4804504-4804504.	1.7	4
35	Test Results of Three Poloidal Field Superconducting Samples in SULTAN. IEEE Transactions on Applied Superconductivity, 2012, 22, 4803504-4803504.	1.7	10
36	1-D Electromagnetic and Thermal-Hydraulic Analysis of the Superconducting Proposal for the CS Magnets of FAST. IEEE Transactions on Applied Superconductivity, 2012, 22, 4902704-4902704.	1.7	1

SIMONETTA TURTÃ¹

#	Article	IF	CITATIONS
37	A thermo-hydraulic analysis of the superconducting proposal for the TF magnet system of FAST. Fusion Engineering and Design, 2011, 86, 1454-1457.	1.9	3
38	FAST: A European ITER satellite experiment in the view of DEMO. Fusion Engineering and Design, 2011, 86, 497-503.	1.9	17
39	A coil test facility for the cryogenic tests of the JT-60SA TF coils. Fusion Engineering and Design, 2011, 86, 561-564.	1.9	4
40	Preparation of PF1/6 and PF2 Conductor Performance Qualification Sample. IEEE Transactions on Applied Superconductivity, 2011, 21, 1930-1933.	1.7	7
41	FAST: Feasibility Analysis for a Completely Superconducting Magnet System. IEEE Transactions on Applied Superconductivity, 2011, 21, 1934-1937.	1.7	8
42	The Effect of Strand Bending on the Voltage-Current Characteristic of \$hbox{Nb}_{3}hbox{Sn}\$ Cable-In-Conduit Conductors. IEEE Transactions on Applied Superconductivity, 2011, 21, 2050-2054.	1.7	7
43	Role of the Cross Section Geometry in Rectangular \${m Nb}_{3}{m Sn}\$ CICC Performances. IEEE Transactions on Applied Superconductivity, 2011, 21, 2032-2035.	1.7	3
44	Design of JT-60SA Magnets and Associated Experimental Validations. IEEE Transactions on Applied Superconductivity, 2011, 21, 1938-1943.	1.7	11
45	Successful performances of the EU-AltTF sample, a large size Nb3Sn cable-in-conduit conductor with rectangular geometry. Superconductor Science and Technology, 2010, 23, 045028.	3.5	21
46	Conductor Manufacturing of the ITER TF Full-Size Performance Samples. IEEE Transactions on Applied Superconductivity, 2010, 20, 1412-1415.	1.7	10
47	PRELIMINARY DESIGN OF 30 KA CURRENT LEADS FOR THE ENEA CICC UPGRADED TEST FACILITY. , 2010, , .		1
48	The JT-60SA Toroidal Field Conductor Reference Sample: Manufacturing and Test Results. IEEE Transactions on Applied Superconductivity, 2010, 20, 442-446.	1.7	21
49	ENFASI: Conceptual Design of a 15 T Large Bore Superconducting Test Facility. IEEE Transactions on Applied Superconductivity, 2009, 19, 1548-1551.	1.7	5
50	Application of the ENEA Joint Concept to NbTi CIC Conductors. IEEE Transactions on Applied Superconductivity, 2009, 19, 1544-1547.	1.7	2
51	Neutronic analysis of the JT-60SA toroidal magnets. Fusion Engineering and Design, 2009, 84, 1947-1952.	1.9	19
52	Analysis of Various Dopants on the \${m MgB}_{2}\$ Superconducting Properties. IEEE Transactions on Applied Superconductivity, 2009, 19, 2802-2806.	1.7	4
53	The Influence of Bending Strain on the Critical Current of \${m Nb}_{3}{m Sn}\$ Strands With Different Filament Twist Pitch. IEEE Transactions on Applied Superconductivity, 2009, 19, 2624-2627.	1.7	0
54	2D thermal analysis for heat transfer from casing to winding pack in JT-60SA TF coils. Fusion Engineering and Design, 2009, 84, 1531-1538.	1.9	9

Simonetta TurtÃ¹

#	Article	IF	CITATIONS
55	Magnetic and Transport Characterization of NbTi Strands as a Basis for the Design of Fusion Magnets. IEEE Transactions on Applied Superconductivity, 2009, 19, 2544-2547.	1.7	15
56	Status of JT-60SA tokamak under the EU-JA Broader Approach Agreement. Fusion Engineering and Design, 2008, 83, 795-803.	1.9	22
57	Manufacturing of the ITER TF Full Size Prototype Conductor. IEEE Transactions on Applied Superconductivity, 2008, 18, 1105-1108.	1.7	13
58	Conductor Design of CS and EF Coils for JT-60SA. IEEE Transactions on Applied Superconductivity, 2008, 18, 212-215.	1.7	23
59	Test Results of Two European ITER TF Conductor Samples in SULTAN. IEEE Transactions on Applied Superconductivity, 2008, 18, 1088-1091.	1.7	56
60	Influence of cable layout on the performance of ITER-type Nb3Sn conductors. Journal of Physics: Conference Series, 2008, 97, 012027.	0.4	12
61	Joint Design for the EDIPO. IEEE Transactions on Applied Superconductivity, 2008, 18, 192-195.	1.7	13
62	A New Design for JT-60SA Toroidal Field Coils Conductor and Joints. IEEE Transactions on Applied Superconductivity, 2008, 18, 216-219.	1.7	6
63	Conceptual Design of Superconducting Magnet System for JT-60SA. IEEE Transactions on Applied Superconductivity, 2008, 18, 441-446.	1.7	27
64	JT-60SA Toroidal Field Magnet System. IEEE Transactions on Applied Superconductivity, 2008, 18, 505-508.	1.7	21
65	Variable-temperature characterization of NbTi strands in the low critical-current density range. Journal of Physics: Conference Series, 2008, 97, 012306.	0.4	7
66	Pure Bending Strain Experiments on Jacketed \${m Nb}_{3}{m Sn}\$ Strands for ITER. IEEE Transactions on Applied Superconductivity, 2007, 17, 2591-2594.	1.7	14
67	Current Redistribution Inside ITER Full-Size Conductors Well Before Any Transition Voltage Detection. IEEE Transactions on Applied Superconductivity, 2007, 17, 1485-1488.	1.7	1
68	Test Results of Two ITER TF Conductor Short Samples Using High Current Density Nb\$_{3}\$Sn Strands. IEEE Transactions on Applied Superconductivity, 2007, 17, 1370-1373.	1.7	38
69	Current (re-)Distribution inside an ITER Full-Size Conductor: a Qualitative Analysis. Journal of Physics: Conference Series, 2006, 43, 1055-1058.	0.4	1
70	Cryogenic Test of High Temperature Superconducting Current Leads at ENEA. AIP Conference Proceedings, 2006, , .	0.4	4
71	The ITER toroidal field model coil project. Fusion Engineering and Design, 2005, 73, 189-327.	1.9	114
72	Current Distribution Measurement on the ITER-Type NbTi Bus Bar III. IEEE Transactions on Applied Superconductivity, 2005, 15, 1407-1410.	1.7	14

SIMONETTA TURTÃ¹

#	Article	IF	CITATIONS
73	Inductive heating on a NbTi CICC magnet: energy calibration and stability analysis. Cryogenics, 2003, 43, 699-704.	1.7	1
74	Loss calculations in a CICC solenoid exposed to rapidly changing magnetic fields. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1750-1753.	1.2	6
75	H2 and H2/CO oxidation mechanism on Pt/C, Ru/C and Pt–Ru/C electrocatalysts. Journal of Applied Electrochemistry, 2001, 31, 325-334.	2.9	125
76	Nanosized metal catalysts in electrodes for solid polymeric electrolyte fuel cells: an XPS and XRD study. Applied Surface Science, 2001, 178, 149-155.	6.1	18
77	Stability in a long length NbTi CICC. IEEE Transactions on Applied Superconductivity, 2001, 11, 1542-1545.	1.7	9
78	Comparison between the predictions of the thermo-hydraulic code Gandalf and the results of a long length instrumented CICC module experiment. Cryogenics, 2000, 40, 555-559.	1.7	7
79	On the surface acid–base properties of titanium sheets. Applied Surface Science, 2000, 156, 1-8.	6.1	7
80	Synthesis of aluminum oxide-based ceramics by laser photoinduced reactions from gaseous precursors. Journal of Materials Research, 1997, 12, 774-782.	2.6	11
81	Synthesis of TiC and SiC/TiC nanocrystalline powders by gas-phase laser-induced reaction. Journal of Materials Science, 1997, 32, 5629-5635.	3.7	47
82	Microstructural properties of laser synthesized Si/C/N nanoparticles. Applied Surface Science, 1996, 93, 101-108.	6.1	9
83	Dual ion beam sputtering deposition of silicon oxynitride thin films. , 1996, 2776, 373.		2
84	Production of ceramic powders from laser-driven reactions. , 1995, 2461, 124.		0
85	Nanoscale Si-C and Al-O-(N,C) ceramic powders by laser synthesis from gaseous precursors. Scripta Materialia, 1995, 6, 341-344.	0.5	8
86	Characterization of nanophase powders prepared by laser synthesis. Surface and Interface Analysis, 1994, 22, 248-253.	1.8	5
87	Influence of Oxygen Contamination on the Pd-Si Solid-State Reactions Activated by Mechanical Alloying. Chemistry of Materials, 1994, 6, 983-989.	6.7	3
88	Laser synthesis and microstructural characterization of ceramic nanosized powders. , 1994, 2207, 490.		1
89	Laserâ€driven synthesis of nanocrystalline alumina powders from gasâ€phase precursors. Applied Physics Letters, 1993, 63, 1345-1347.	3.3	49
90	Coupling between the charge carriers and lattice distortions via modulation of the orbital angular momentum of the 3d holes by polarized xas spectroscopy. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1061-1062.	1.2	10

#	Article	IF	CITATIONS
91	CuK-edge polarized x-ray-absorption near-edge structure ofBi2CaSr2Cu2O8. Physical Review B, 1991, 44, 4560-4569.	3.2	30