

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/101336/publications.pdf Version: 2024-02-01

VINC OF

#	Article	IF	CITATIONS
1	Fourierâ€transform ion cyclotron resonance mass spectrometry for characterizing proteoforms. Mass Spectrometry Reviews, 2022, 41, 158-177.	2.8	12
2	RBM20 phosphorylation and its role in nucleocytoplasmic transport and cardiac pathogenesis. FASEB Journal, 2022, 36, e22302.	0.2	10
3	Segmental Bronchial Allergen Challenge Elicits Distinct Metabolic Phenotypes in Allergic Asthma. Metabolites, 2022, 12, 381.	1.3	2
4	One-Pot Exosome Proteomics Enabled by a Photocleavable Surfactant. Analytical Chemistry, 2022, 94, 7164-7168.	3.2	9
5	Airway fibrin formation cascade in allergic asthma exacerbation: implications for inflammation and remodeling. Clinical Proteomics, 2022, 19, 15.	1.1	3
6	<i>Rbm20</i> ablation is associated with changes in the expression of titin-interacting and metabolic proteins. Molecular Omics, 2022, 18, 627-634.	1.4	2
7	Intact Protein Mass Spectrometry for Therapeutic Protein Quantitation, Pharmacokinetics, and Biotransformation in Preclinical and Clinical Studies: An Industry Perspective. Journal of the American Society for Mass Spectrometry, 2021, 32, 1886-1900.	1.2	19
8	Ultrahigh-Resolution Mass Spectrometry-Based Platform for Plasma Metabolomics Applied to Type 2 Diabetes Research. Journal of Proteome Research, 2021, 20, 463-473.	1.8	15
9	Systemic Metabolic Alterations Correlate with Islet-Level Prostaglandin E2 Production and Signaling Mechanisms That Predict Î ² -Cell Dysfunction in a Mouse Model of Type 2 Diabetes. Metabolites, 2021, 11, 58.	1.3	16
10	Stable Picodisc Assemblies from Saposin Proteins and Branched Detergents. Biochemistry, 2021, 60, 1108-1119.	1.2	2
11	Discovery of RSV-Induced BRD4 Protein Interactions Using Native Immunoprecipitation and Parallel Accumulation—Serial Fragmentation (PASEF) Mass Spectrometry. Viruses, 2021, 13, 454.	1.5	20
12	Novel Strategies to Address the Challenges in Top-Down Proteomics. Journal of the American Society for Mass Spectrometry, 2021, 32, 1278-1294.	1.2	102
13	Human Islet Expression Levels of Prostaglandin E ₂ Synthetic Enzymes, But Not Prostaglandin EP3 Receptor, Are Positively Correlated with Markers of β-Cell Function and Mass in Nondiabetic Obesity. ACS Pharmacology and Translational Science, 2021, 4, 1338-1348.	2.5	10
14	High-Throughput Multi-attribute Analysis of Antibody-Drug Conjugates Enabled by Trapped Ion Mobility Spectrometry and Top-Down Mass Spectrometry. Analytical Chemistry, 2021, 93, 10013-10021.	3.2	29
15	Structural O-Glycoform Heterogeneity of the SARS-CoV-2 Spike Protein Receptor-Binding Domain Revealed by Top-Down Mass Spectrometry. Journal of the American Chemical Society, 2021, 143, 12014-12024.	6.6	48
16	Ultrafast and Reproducible Proteomics from Small Amounts of Heart Tissue Enabled by Azo and timsTOF Pro. Journal of Proteome Research, 2021, 20, 4203-4211.	1.8	34
17	Multiomics Method Enabled by Sequential Metabolomics and Proteomics for Human Pluripotent Stem-Cell-Derived Cardiomyocytes. Journal of Proteome Research, 2021, 20, 4646-4654.	1.8	10
18	Functionally Integrated Top-Down Proteomics for Standardized Assessment of Human Induced Pluripotent Stem Cell-Derived Engineered Cardiac Tissues. Journal of Proteome Research, 2021, 20, 1424-1433.	1.8	14

#	Article	IF	CITATIONS
19	Proteomic Analysis of the Functional Inward Rectifier Potassium Channel (Kir) 2.1 Reveals Several Novel Phosphorylation Sites. Biochemistry, 2021, 60, 3292-3301.	1.2	5
20	The Human Proteoform Project: Defining the human proteome. Science Advances, 2021, 7, eabk0734.	4.7	106
21	Top-Down Proteomics Reveals Myofilament Proteoform Heterogeneity among Various Rat Skeletal Muscle Tissues. Journal of Proteome Research, 2020, 19, 446-454.	1.8	13
22	Photocleavable Surfactant-Enabled Extracellular Matrix Proteomics. Analytical Chemistry, 2020, 92, 15693-15698.	3.2	24
23	Top-Down Proteomics of Endogenous Membrane Proteins Enabled by Cloud Point Enrichment and Multidimensional Liquid Chromatography–Mass Spectrometry. Analytical Chemistry, 2020, 92, 15726-15735.	3.2	24
24	Top-down proteomics: challenges, innovations, and applications in basic and clinical research. Expert Review of Proteomics, 2020, 17, 719-733.	1.3	70
25	Nanoproteomics enables proteoform-resolved analysis of low-abundance proteins in human serum. Nature Communications, 2020, 11, 3903.	5.8	43
26	Interlaboratory Study for Characterizing Monoclonal Antibodies by Top-Down and Middle-Down Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 1783-1802.	1.2	67
27	MASH Explorer: A Universal Software Environment for Top-Down Proteomics. Journal of Proteome Research, 2020, 19, 3867-3876.	1.8	62
28	Rapid Analysis of Reduced Antibody Drug Conjugate by Online LC-MS/MS with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2020, 92, 15096-15103.	3.2	8
29	Chemical Control of Quorum Sensing in <i>E.Âcoli</i> : Identification of Small Molecule Modulators of SdiA and Mechanistic Characterization of a Covalent Inhibitor. ACS Infectious Diseases, 2020, 6, 3092-3103.	1.8	13
30	Distinct hypertrophic cardiomyopathy genotypes result in convergent sarcomeric proteoform profiles revealed by top-down proteomics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24691-24700.	3.3	67
31	GRK5 Controls SAP97-Dependent Cardiotoxic β ₁ Adrenergic Receptor-CaMKII Signaling in Heart Failure. Circulation Research, 2020, 127, 796-810.	2.0	16
32	Enhancing Top-Down Proteomics Data Analysis by Combining Deconvolution Results through a Machine Learning Strategy. Journal of the American Society for Mass Spectrometry, 2020, 31, 1104-1113.	1.2	19
33	Highâ€Throughput Proteomics Enabled by a Photocleavable Surfactant. Angewandte Chemie - International Edition, 2020, 59, 8406-8410.	7.2	37
34	Highâ€Throughput Proteomics Enabled by a Photocleavable Surfactant. Angewandte Chemie, 2020, 132, 8484-8488.	1.6	14
35	MS-Derived Isotopic Fine Structure Reveals Forazoline A as a Thioketone-Containing Marine-Derived Natural Product. Organic Letters, 2020, 22, 1275-1279.	2.4	12
36	Higher-order structural characterisation of native proteins and complexes by top-down mass spectrometry. Chemical Science, 2020, 11, 12918-12936.	3.7	81

#	Article	IF	CITATIONS
37	Intact-Mass Analysis Facilitating the Identification of Large Human Heart Proteoforms. Analytical Chemistry, 2019, 91, 10937-10942.	3.2	11
38	Analysis of cardiac troponin proteoforms by top-down mass spectrometry. Methods in Enzymology, 2019, 626, 347-374.	0.4	10
39	Middle-Down Multi-Attribute Analysis of Antibody-Drug Conjugates with Electron Transfer Dissociation. Analytical Chemistry, 2019, 91, 11661-11669.	3.2	22
40	A five-level classification system for proteoform identifications. Nature Methods, 2019, 16, 939-940.	9.0	55
41	An Unbiased Proteomics Method to Assess the Maturation of Human Pluripotent Stem Cell–Derived Cardiomyocytes. Circulation Research, 2019, 125, 936-953.	2.0	59
42	Bridged Hybrid Monolithic Column Coupled to High-Resolution Mass Spectrometry for Top-Down Proteomics. Analytical Chemistry, 2019, 91, 1743-1747.	3.2	28
43	Back Cover: Identification and Quantification of Proteoforms by Mass Spectrometry. Proteomics, 2019, 19, 1970085.	1.3	9
44	Best practices and benchmarks for intact protein analysis for top-down mass spectrometry. Nature Methods, 2019, 16, 587-594.	9.0	241
45	Epigenetic Priming of Human Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Accelerates Cardiomyocyte Maturation. Stem Cells, 2019, 37, 910-923.	1.4	30
46	Identification and Quantification of Proteoforms by Mass Spectrometry. Proteomics, 2019, 19, e1800361.	1.3	147
47	Reproducible large-scale synthesis of surface silanized nanoparticles as an enabling nanoproteomics platform: Enrichment of the human heart phosphoproteome. Nano Research, 2019, 12, 1473-1481.	5.8	22
48	Top-down Mass Spectrometry of Sarcomeric Protein Post-translational Modifications from Non-human Primate Skeletal Muscle. Journal of the American Society for Mass Spectrometry, 2019, 30, 2460-2469.	1.2	26
49	A photocleavable surfactant for top-down proteomics. Nature Methods, 2019, 16, 417-420.	9.0	82
50	A Top-Down Proteomics Platform Coupling Serial Size Exclusion Chromatography and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2019, 91, 3835-3844.	3.2	37
51	Comprehensive Characterization of the Recombinant Catalytic Subunit of cAMP-Dependent Protein Kinase by Top-Down Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 2561-2570.	1.2	10
52	Solution structure of human myeloid-derived growth factor suggests a conserved function in the endoplasmic reticulum. Nature Communications, 2019, 10, 5612.	5.8	15
53	Comprehensive characterization of monoclonal antibody by Fourier transform ion cyclotron resonance mass spectrometry. MAbs, 2019, 11, 106-115.	2.6	50
54	Deletion of Enigma Homologue from the Z-disc slows tension development kinetics in mouse myocardium. Journal of General Physiology, 2019, 151, 670-679.	0.9	6

#	Article	IF	CITATIONS
55	Simultaneous Quantification of Protein Expression and Modifications by Top-down Targeted Proteomics: A Case of the Sarcomeric Subproteome. Molecular and Cellular Proteomics, 2019, 18, 594-605.	2.5	27
56	Harnessing the Power of Proteomics to Assess Drug Safety and Guide Clinical Trials. Circulation, 2018, 137, 1011-1014.	1.6	5
57	Comprehensive Characterization of Swine Cardiac Troponin T Proteoforms by Top-Down Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2018, 29, 1284-1294.	1.2	15
58	ProForma: A Standard Proteoform Notation. Journal of Proteome Research, 2018, 17, 1321-1325.	1.8	35
59	How many human proteoforms are there?. Nature Chemical Biology, 2018, 14, 206-214.	3.9	580
60	Impact of Phosphorylation on the Mass Spectrometry Quantification of Intact Phosphoproteins. Analytical Chemistry, 2018, 90, 4935-4939.	3.2	17
61	Novel Sarcopenia-related Alterations in Sarcomeric Protein Post-translational Modifications (PTMs) in Skeletal Muscles Identified by Top-down Proteomics. Molecular and Cellular Proteomics, 2018, 17, 134-145.	2.5	36
62	Large Cardiac Muscle Patches Engineered From Human Induced-Pluripotent Stem Cell–Derived Cardiac Cells Improve Recovery From Myocardial Infarction in Swine. Circulation, 2018, 137, 1712-1730.	1.6	332
63	Top-Down Proteomics: Ready for Prime Time?. Analytical Chemistry, 2018, 90, 110-127.	3.2	159
64	Online Hydrophobic Interaction Chromatography–Mass Spectrometry for the Analysis of Intact Monoclonal Antibodies. Analytical Chemistry, 2018, 90, 7135-7138.	3.2	53
65	The HCM-linked W792R mutation in cardiac myosin-binding protein C reduces C6 FnIII domain stability. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H1179-H1191.	1.5	19
66	Temperature-sensitive sarcomeric protein post-translational modifications revealed by top-down proteomics. Journal of Molecular and Cellular Cardiology, 2018, 122, 11-22.	0.9	19
67	Characterization of TTN Novex Splicing Variants across Species and the Role of RBM20 in Novex-Specific Exon Splicing. Genes, 2018, 9, 86.	1.0	7
68	Zâ€band and Mâ€band titin splicing and regulation by RNA binding motif 20 in striated muscles. Journal of Cellular Biochemistry, 2018, 119, 9986-9996.	1.2	10
69	Mass Spectrometry Analysis of RBM20 Phosphorylation and Its Role in Titin Splicing. FASEB Journal, 2018, 32, 791.13.	0.2	0
70	Top-Down Proteomics of Large Proteins up to 223 kDa Enabled by Serial Size Exclusion Chromatography Strategy. Analytical Chemistry, 2017, 89, 5467-5475.	3.2	108
71	Distinct sequences and post-translational modifications in cardiac atrial and ventricular myosin light chains revealed by top-down mass spectrometry. Journal of Molecular and Cellular Cardiology, 2017, 107, 13-21.	0.9	28
72	Complete Characterization of Cardiac Myosin Heavy Chain (223 kDa) Enabled by Size-Exclusion Chromatography and Middle-Down Mass Spectrometry. Analytical Chemistry, 2017, 89, 4922-4930.	3.2	28

#	Article	IF	CITATIONS
73	Coupling functionalized cobalt ferrite nanoparticle enrichment with online LC/MS/MS for top-down phosphoproteomics. Chemical Science, 2017, 8, 4306-4311.	3.7	34
74	Quantitative Proteomics and Immunohistochemistry Reveal Insights into Cellular and Molecular Processes in the Infarct Border Zone One Month after Myocardial Infarction. Journal of Proteome Research, 2017, 16, 2101-2112.	1.8	18
75	Ubiquitin Chain Enrichment Middle-Down Mass Spectrometry Enables Characterization of Branched Ubiquitin Chains in Cellulo. Analytical Chemistry, 2017, 89, 4428-4434.	3.2	41
76	Electrophilic probes for deciphering substrate recognition by O-GlcNAc transferase. Nature Chemical Biology, 2017, 13, 1267-1273.	3.9	28
77	PP2A-B′ holoenzyme substrate recognition, regulation and role in cytokinesis. Cell Discovery, 2017, 3, 17027.	3.1	68
78	Ubiquitin Chain Enrichment Middle-Down Mass Spectrometry (UbiChEM-MS) Reveals Cell-Cycle Dependent Formation of Lys11/Lys48 Branched Ubiquitin Chains. Journal of Proteome Research, 2017, 16, 3363-3369.	1.8	22
79	The Impact of Phosphorylation on Electron Capture Dissociation of Proteins: A Top-Down Perspective. Journal of the American Society for Mass Spectrometry, 2017, 28, 1805-1814.	1.2	9
80	Subunit‣pecific Labeling of Ubiquitin Chains by Using Sortase: Insights into the Selectivity of Deubiquitinases. ChemBioChem, 2016, 17, 1525-1531.	1.3	6
81	Top-Down Targeted Proteomics Reveals Decrease in Myosin Regulatory Light-Chain Phosphorylation That Contributes to Sarcopenic Muscle Dysfunction. Journal of Proteome Research, 2016, 15, 2706-2716.	1.8	43
82	A Family of Photolabile Nitroveratryl-Based Surfactants That Self-Assemble into Photodegradable Supramolecular Structures. Langmuir, 2016, 32, 3963-3969.	1.6	10
83	Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics. Journal of Muscle Research and Cell Motility, 2016, 37, 41-52.	0.9	29
84	Top-Down Proteomics. , 2016, , 187-212.		1
85	Top-down Proteomics: Technology Advancements and Applications to Heart Diseases. Expert Review of Proteomics, 2016, 13, 717-730.	1.3	84
86	MASH Suite Pro: A Comprehensive Software Tool for Top-Down Proteomics. Molecular and Cellular Proteomics, 2016, 15, 703-714.	2.5	111
87	Comprehensive Characterization of AMP-Activated Protein Kinase Catalytic Domain by Top-Down Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2016, 27, 220-232.	1.2	9
88	Online Hydrophobic Interaction Chromatography–Mass Spectrometry for Top-Down Proteomics. Analytical Chemistry, 2016, 88, 1885-1891.	3.2	83
89	Quantitative proteomics reveals differential regulation of protein expression in recipient myocardium after trilineage cardiovascular cell transplantation. Proteomics, 2015, 15, 2560-2567.	1.3	12
90	Specific Enrichment of Phosphoproteins Using Functionalized Multivalent Nanoparticles. Journal of the American Chemical Society, 2015, 137, 2432-2435.	6.6	61

#	Article	IF	CITATIONS
91	New Mass-Spectrometry-Compatible Degradable Surfactant for Tissue Proteomics. Journal of Proteome Research, 2015, 14, 1587-1599.	1.8	66
92	Dissecting human skeletal muscle troponin proteoforms by top-down mass spectrometry. Journal of Muscle Research and Cell Motility, 2015, 36, 169-181.	0.9	7
93	Effective Top-Down LC/MS+ Method for Assessing Actin Isoforms as a Potential Cardiac Disease Marker. Analytical Chemistry, 2015, 87, 8399-8406.	3.2	27
94	Three Dimensional Liquid Chromatography Coupling Ion Exchange Chromatography/Hydrophobic Interaction Chromatography/Reverse Phase Chromatography for Effective Protein Separation in Top-Down Proteomics. Analytical Chemistry, 2015, 87, 5363-5371.	3.2	64
95	Comprehensive assessment of chamber-specific and transmural heterogeneity in myofilament protein phosphorylation by top-down mass spectrometry. Journal of Molecular and Cellular Cardiology, 2015, 87, 102-112.	0.9	27
96	Myocardial Infarction-induced N-terminal Fragment of Cardiac Myosin-binding Protein C (cMyBP-C) Impairs Myofilament Function in Human Myocardium. Journal of Biological Chemistry, 2014, 289, 8818-8827.	1.6	39
97	Cardiac Repair in a Porcine Model of Acute Myocardial Infarction with Human Induced Pluripotent Stem Cell-Derived Cardiovascular Cells. Cell Stem Cell, 2014, 15, 750-761.	5.2	407
98	Alpha1 catalytic subunit of AMPK modulates contractile function of cardiomyocytes through phosphorylation of troponin I. Life Sciences, 2014, 98, 75-82.	2.0	24
99	MASH Suite: A User-Friendly and Versatile Software Interface for High-Resolution Mass Spectrometry Data Interpretation and Visualization. Journal of the American Society for Mass Spectrometry, 2014, 25, 464-470.	1.2	67
100	Topâ€down proteomics in health and disease: Challenges and opportunities. Proteomics, 2014, 14, 1195-1210.	1.3	169
101	Top-down Proteomics Reveals Concerted Reductions in Myofilament and Z-disc Protein Phosphorylation after Acute Myocardial Infarction. Molecular and Cellular Proteomics, 2014, 13, 2752-2764.	2.5	96
102	Topâ€down mass spectrometry of cardiac myofilament proteins in health and disease. Proteomics - Clinical Applications, 2014, 8, 554-568.	0.8	27
103	Middle-Down Mass Spectrometry Enables Characterization of Branched Ubiquitin Chains. Biochemistry, 2014, 53, 4979-4989.	1.2	79
104	Effective Protein Separation by Coupling Hydrophobic Interaction and Reverse Phase Chromatography for Top-down Proteomics. Analytical Chemistry, 2014, 86, 7899-7906.	3.2	52
105	Proteomics in heart failure: top-down or bottom-up?. Pflugers Archiv European Journal of Physiology, 2014, 466, 1199-1209.	1.3	46
106	In-depth proteomic analysis of human tropomyosin by top-down mass spectrometry. Journal of Muscle Research and Cell Motility, 2013, 34, 199-210.	0.9	40
107	Ultrahigh pressure fast size exclusion chromatography for top-down proteomics. Proteomics, 2013, 13, 2563-2566.	1.3	31
108	Top-down Targeted Proteomics for Deep Sequencing of Tropomyosin Isoforms. Journal of Proteome Research, 2013, 12, 187-198.	1.8	45

#	Article	IF	CITATIONS
109	The impact of antibody selection on the detection of cardiac troponin I. Clinica Chimica Acta, 2013, 420, 82-88.	0.5	18
110	High throughput screening of disulfideâ€containing proteins in a complex mixture. Proteomics, 2013, 13, 3256-3260.	1.3	15
111	Nâ€ŧerminal region of cardiac myosin binding protein impairs myofilament function. FASEB Journal, 2013, 27, 921.7.	0.2	0
112	AMP-Activated Protein Kinase Phosphorylates Cardiac Troponin I and Alters Contractility of Murine Ventricular Myocytes. Circulation Research, 2012, 110, 1192-1201.	2.0	70
113	Generation and Functional Characterization of Knock-in Mice Harboring the Cardiac Troponin I-R21C Mutation Associated with Hypertrophic Cardiomyopathy. Journal of Biological Chemistry, 2012, 287, 2156-2167.	1.6	38
114	Comprehensive Mass Spectrometric Mapping of the Hydroxylated Amino Acid residues of the α1(V) Collagen Chain. Journal of Biological Chemistry, 2012, 287, 40598-40610.	1.6	47
115	Augmented Phosphorylation of Cardiac Troponin I in Hypertensive Heart Failure*. Journal of Biological Chemistry, 2012, 287, 848-857.	1.6	88
116	Purification and High-Resolution Top-Down Mass Spectrometric Characterization of Human Salivary α-Amylase. Analytical Chemistry, 2012, 84, 3339-3346.	3.2	42
117	Top-Down Quantitative Proteomics Identified Phosphorylation of Cardiac Troponin I as a Candidate Biomarker for Chronic Heart Failure. Journal of Proteome Research, 2011, 10, 4054-4065.	1.8	166
118	Phosphorylation, but Not Alternative Splicing or Proteolytic Degradation, Is Conserved in Human and Mouse Cardiac Troponin T. Biochemistry, 2011, 50, 6081-6092.	1.2	34
119	Top-down high-resolution electron capture dissociation mass spectrometry for comprehensive characterization of post-translational modifications in Rhesus monkey cardiac troponin I. International Journal of Mass Spectrometry, 2011, 305, 95-102.	0.7	21
120	A preferred AMPK phosphorylation site adjacent to the inhibitory loop of cardiac and skeletal troponin I. Protein Science, 2011, 20, 894-907.	3.1	23
121	Comprehensive Analysis of Protein Modifications by Top-Down Mass Spectrometry. Circulation: Cardiovascular Genetics, 2011, 4, 711-711.	5.1	126
122	Deciphering modifications in swine cardiac troponin I by top-down high-resolution tandem mass spectrometry. Journal of the American Society for Mass Spectrometry, 2010, 21, 940-948.	1.2	59
123	Delineating <i>Anopheles gambiae</i> coactivator associated arginine methyltransferase 1 automethylation using top–down high resolution tandem mass spectrometry. Protein Science, 2009, 18, 1272-1280.	3.1	20
124	<i>In Vivo</i> Phosphorylation Site Mapping in Mouse Cardiac Troponin I by High Resolution Top-Down Electron Capture Dissociation Mass Spectrometry: Ser22/23 Are the Only Sites Basally Phosphorylated. Biochemistry, 2009, 48, 8161-8170.	1.2	82
125	Detection of four oxidation sites in viral prolyl-4-hydroxylase by top-down mass spectrometry. Protein Science, 2009, 12, 2320-2326.	3.1	32
126	Top-down high-resolution mass spectrometry of cardiac myosin binding protein C revealed that truncation alters protein phosphorylation state. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12658-12663.	3.3	141

#	Article	IF	CITATIONS
127	Single amino acid sequence polymorphisms in rat cardiac troponin revealed by top–down tandem mass spectrometry. Journal of Muscle Research and Cell Motility, 2008, 29, 203-212.	0.9	46
128	Unraveling Molecular Complexity of Phosphorylated Human Cardiac Troponin I by Top Down Electron Capture Dissociation/Electron Transfer Dissociation Mass Spectrometry. Molecular and Cellular Proteomics, 2008, 7, 1838-1849.	2.5	104
129	Top down characterization of secreted proteins from Mycobacterium tuberculosis by electron capture dissociation mass spectrometry. Journal of the American Society for Mass Spectrometry, 2003, 14, 253-261.	1.2	76
130	Top-down mass spectrometry of a 29-kDa protein for characterization of any posttranslational modification to within one residue. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1774-1779.	3.3	248
131	Top Down Characterization of Larger Proteins (45 kDa) by Electron Capture Dissociation Mass Spectrometry. Journal of the American Chemical Society, 2002, 124, 672-678.	6.6	357
132	Blackbody infrared radiative dissociation of larger (42 kDa) multiply charged proteins. International Journal of Mass Spectrometry, 2001, 210-211, 203-214.	0.7	32
133	Electron capture dissociation of gaseous multiply charged ions by Fourier-transform ion cyclotron resonance. Journal of the American Society for Mass Spectrometry, 2001, 12, 245-249.	1.2	226
134	Activated Ion Electron Capture Dissociation for Mass Spectral Sequencing of Larger (42 kDa) Proteins. Analytical Chemistry, 2000, 72, 4778-4784.	3.2	321