
Åukasz Gorajek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1013314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Segmented vortex wavefront coherent beam combining. AIP Advances, 2022, 12, .	1.3	Ο
2	Simplified sensitivity analysis of coherent beam combining in a tiled aperture architecture. Applied Optics, 2021, 60, 5012.	1.8	6
3	Characterization of Absorption Losses and Transient Thermo-Optic Effects in a High-Power Laser System. Photonics, 2020, 7, 94.	2.0	1
4	Investigations of transient thermal optics effects in 10kW fiber laser effector. , 2020, , .		0
5	All-PM Fiber Thulium-Doped Mode-Locked Fiber Laser and Amplifier Based on Nonlinear Loop Mirror. , 2019, , .		0
6	Characterization of beam quality of 10-kW class laser. , 2019, , .		1
7	Beam quality characterization of 10-kW CW fiber laser effector. , 2019, , .		0
8	MW peak power KTP-OPO-based "eye-safe―transmitter. Opto-electronics Review, 2018, 26, 188-193.	2.4	9
9	Modeling of the laser beam shape for high-power applications. Optical Engineering, 2018, 57, 1.	1.0	4
10	High-peak power, athermal Nd:YAG transmitter. , 2017, , .		1
11	Analysis of optical scheme for medium-range directed energy laser weapon system. , 2017, , .		0
12	Side-pumped neodymium laser with self-adaptive, nonreciprocal cavity. Opto-electronics Review, 2016, 24, .	2.4	1
13	Passively Q-switched Nd:YAG laser with diffractive output resonator. Laser Physics Letters, 2014, 11, 115813.	1.4	4
14	Self-adaptive, passively Q-switched, diode-side-pumped Nd:YAG slab laser. Proceedings of SPIE, 2014, , .	0.8	0
15	Polycrystaline Cr:ZnSe laser pumped by efficient Tm:YLF laser. Proceedings of SPIE, 2014, , .	0.8	0
16	Short-pulsed gain-switched Cr ²⁺ :ZnSe laser. Laser Physics Letters, 2014, 11, 045803.	1.4	1
17	Diffraction-limited, grazing-incidence Nd:YVO4slab laser side pumped by 2D laser diode stack. , 2014, , .		0

18 Design and characterization of beam shapers for end-pumped lasers. , 2014, , .

0

Åukasz Gorajek

#	Article	IF	CITATIONS
19	Ultra low threshold gain-switched Cr:ZnSe laser. , 2014, , .		Ο
20	High repetition rate, Q-switched Ho:YAG laser resonantly pumped by a 20ÂW linearly polarized Tm: fiber laser. Applied Physics B: Lasers and Optics, 2014, 114, 395-399.	2.2	21
21	Quasi-continuous-wave, diode-side-pumped, self-adaptive Nd:YAG slab laser with diffractive output. , 2014, , .		Ο
22	Resonantly pumped, Q-switched Ho:YLF laser with output energy of 5 mJ at 1 kHz. Photonics Letters of Poland, 2014, 6, .	0.4	0
23	Diode side pumped Nd:YAG slab laser with self-adaptive resonator. Proceedings of SPIE, 2013, , .	0.8	Ο
24	Compact diode-side-pumped Yb:YAG slab laser operating in room temperature. Proceedings of SPIE, 2013,	0.8	0
25	Diode-side-pumped Nd:YAG slab laser with self-adaptive resonator. , 2013, , .		Ο
26	Diode pumped, q-switched Tm:YLF laser. Proceedings of SPIE, 2013, , .	0.8	0
27	Polycrystaline Cr2+:ZnSe Laser Pumped by Efficient Tm:YLF Oscillator. , 2013, , .		Ο
28	An efficient, Q-switched, resonantly pumped Ho:YAG laser. , 2013, , .		0
29	Efficient, high peak power Tm:YLF laser. Photonics Letters of Poland, 2013, 5, .	0.4	Ο
30	The investigation of transient thermal effects in optical elements under high laser intensities. Proceedings of SPIE, 2012, , .	0.8	0
31	A highly efficient resonantly pumped Ho:YAG laser. Proceedings of SPIE, 2012, , .	0.8	1
32	Analysis on non-stationary thermo-optical effects occurring in laser mirrors under high heat load. , 2012, , .		0
33	250ÂmJ, self-adaptive, diode-side-pumped Nd:YAG slab laser. Optics Letters, 2012, 37, 2598.	3.3	16
34	Optimization of end-pumped, actively Q-switched, quasi-III-level laser. , 2012, , .		2
35	Laser and Thermo-Optical Characterization of Nd:YAG Ceramics. , 2011, , .		0
36	Q-Switched Ho:YAG Laser Pumped by a Tm:Fiber Laser. , 2011, , .		0

Åukasz Gorajek

#	Article	IF	CITATIONS
37	Optimization of end-pumped, actively Q-switched quasi-III-level lasers. Optics Express, 2011, 19, 15652.	3.4	11
38	Laser and thermo-optical investigations of Nd:YAG ceramics. Optics and Spectroscopy (English) Tj ETQq0 0 0 rgE	BT /Oyerlo	ck 10 Tf 50 70
39	Resonantly pumped acousto-optically Q-switched hybrid Ho:YAG laser. Laser Physics Letters, 2011, 8, 281-285.	1.4	16
40	Analysis of thermo-optic effects in Nd:YAG ceramics disk under high heat load. Proceedings of SPIE, 2011, , .	0.8	0
41	The new optimization method of Q-switched quasi-three-level lasers. Proceedings of SPIE, 2011, , .	0.8	1
42	Resonantly pumped Q-switched Ho:YAG laser. , 2011, , .		0
43	Investigations of thermal effects in Nd:YAG ceramics under high heat load. , 2011, , .		0
44	Resonantly pumped, high peak power Er:YAG laser. Laser Physics, 2010, 20, 470-473.	1.2	143
45	Q-switched Er:YAG lasers resonantly pumped by Erbium fiber laser. Laser Physics, 2010, 20, 661-664.	1.2	135
46	Technology and characterization of Nd:YAG ceramics. AIP Conference Proceedings, 2010, , .	0.4	0

The eye-safe Q-switched Er:YAG laser. Proceedings of SPIE, 2010, , .
Tuneable, hybrid Ho:YAG laser. , 2009, , .

49High repetition rate, high peak power, diode pumped Tm:YLF laser. Laser Physics Letters, 2009, 6, 109-112.1.44550Resonantly pumped tunable Ho:YAG laser. Laser Physics Letters, 2009, 6, 531-534.1.44351High repetition rate, tunable, Q-switched diode pumped Tm:YLF laser. Opto-electronics Review, 2009, 17,
.2.41152Tunable, gain switched Ti3+:Al2O3 laser pumped by intracavity frequency doubled, Nd3+:YLF laser.0.4053Efficient, high peak power, Q-switched, tunable diode pumped Tm:YLF laser. , 2008, , .1

54 High repetition rate, acousto-optic Q-switched, diode pumped Tm:YLF laser. , 2008, , .

0

2

#	Article	IF	CITATIONS
55	The investigations of tunable, high peak power, diode pumped Tm:YLF laser. , 2008, , .		1

56 Actively Q-switched Thulium Lasers. , 0, , .