
Miroslav Raudenský

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1013200/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computational Simulations of Spray Cooling with Air-Assist Injectors. Heat Transfer Engineering, 2023, 44, 823-836.	1.9	1
2	Shear Strength of Adhesive Bonding of Plastics Intended for High Temperature Plastic Radiators. Processes, 2022, 10, 806.	2.8	4
3	Cooling of flue gas by cascade of polymeric hollow fiber heat exchangers. Case Studies in Thermal Engineering, 2022, 36, 102220.	5.7	2
4	Shell-and-tube polymeric hollow fiber heat exchangers with parallel and crossed fibers. Applied Thermal Engineering, 2021, 182, 116001.	6.0	13
5	Heat Transfer Correlations for Secondary Cooling in Continuous Casting. Steel Research International, 2021, 92, 2000465.	1.8	10
6	Computational Simulations of Liquid Sprays in Crossflows With an Algorithmic Module for Primary Atomization. Journal of Engineering for Gas Turbines and Power, 2021, 143, .	1.1	1
7	Remote Cooling of Rolls in Hot Rolling; Applicability to Other Processes. Metals, 2021, 11, 1061.	2.3	4
8	An optimal design for hollow fiber heat exchanger: A combined numerical and experimental investigation. Energy, 2021, 229, 120571.	8.8	10
9	Heat Exchanger for Air-Liquid Application with Chaotised Polymeric Hollow Fibres. Applied Thermal Engineering, 2021, 197, 117365.	6.0	3
10	Spray Cooling Heat Transfer above Leidenfrost Temperature. Metals, 2020, 10, 1270.	2.3	11
11	Energy-Efficient Cooling and Hydraulic Descaling Systems. Metallurgist, 2020, 64, 729-740.	0.6	2
12	Prediction of Leidenfrost Temperature in Spray Cooling for Continuous Casting and Heat Treatment Processes. Metals, 2020, 10, 1551.	2.3	8
13	Fouling of Polymeric Hollow Fiber Heat Exchangers by Air Dust. Materials, 2020, 13, 4931.	2.9	9
14	Dynamic characteristics of water spreading over laser-textured aluminum alloy surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125253.	4.7	31
15	THE INFLUENCE OF THE FIBRES ARRANGEMENT ON HEAT TRANSFER AND PRESSURE DROP OF POLYMERIC HOLLOW FIBRE HEAT EXCHANGERS. Acta Polytechnica, 2020, 60, 122-126.	0.6	6
16	MOMENTUM ANALYSES FOR DETERMINATION OF DROP SIZE AND DISTRIBUTIONS DURING SPRAY ATOMIZATION. Atomization and Sprays, 2020, 30, 97-109.	0.8	4
17	A COMPUTATIONAL PROTOCOL FOR SIMULATION OF LIQUID JETS IN CROSSFLOWS WITH ATOMIZATION. Atomization and Sprays, 2020, 30, 319-330.	0.8	3
18	CHAOTISED POLYMERIC HOLLOW FIBRE BUNDLE AS A CROSSFLOW HEAT EXCHANGER IN AIR-WATER APPLICATION. Acta Polytechnica, 2020, 60, 318-323.	0.6	1

#	Article	IF	CITATIONS
19	Approximate Solution to the Spray Heat Transfer Problem at High Surface Temperatures and Liquid Mass Fluxes. Heat Transfer Engineering, 2019, 40, 1649-1655.	1.9	2
20	Polymeric hollow fiber heat exchangers. AIP Conference Proceedings, 2019, , .	0.4	2
21	Polymeric hollow fibers: Uniform temperature of Li-ion cells in battery modules. Applied Thermal Engineering, 2019, 159, 113940.	6.0	20
22	Polymeric hollow fibers: A supercompact cooling of Li-ion cells. International Journal of Thermal Sciences, 2019, 146, 106060.	4.9	14
23	EXPERIMENTAL VERIFICATION OF POLYMERIC DISTILLATION UNIT. , 2019, , .		0
24	Determination of surface wettability of polymeric hollow fibres. Journal of Elastomers and Plastics, 2018, 50, 737-746.	1.5	14
25	Polymeric Hollowâ€Fiber Bundles as Immersed Heat Exchangers. Chemical Engineering and Technology, 2018, 41, 1457-1465.	1.5	12
26	FLEXIBLE POLYMERIC HOLLOW FIBER HEAT EXCHANGERS. , 2018, , .		1
27	Numerical investigation of heat transfer on the outer surface of polymeric hollow fibers. Materiali in Tehnologije, 2018, 52, 459-463.	0.5	1
28	The effect of water temperature on cooling during high pressure water descaling. Thermal Science, 2018, 22, 2965-2971.	1.1	2
29	Intensification of heat transfer of polymeric hollow fiber heat exchangers by chaotisation. Applied Thermal Engineering, 2017, 113, 632-638.	6.0	26
30	Mutual collision of water jets from adjacent high pressure flat jet nozzles on flat surfaces during hydraulic descaling. Tehnicki Vjesnik, 2016, 23, .	0.2	0
31	Liquid Sprays for Heat Transfer Enhancements: A Review. Heat Transfer Engineering, 2016, 37, 1401-1417.	1.9	21
32	Solar panel cooling system with hollow fibres. Applied Solar Energy (English Translation of) Tj ETQq0 0 0 rgBT /O	verlock 10 1.6) Tf 50 222 Tc
33	Polymeric hollow fiber heat exchanger as an automotive radiator. Applied Thermal Engineering, 2016, 108, 798-803.	6.0	37
34	Flexible polymeric hollow fiber heat exchangers for electronic systems. , 2016, , .		4
35	Recent developments of water and mist spray cooling in continuous casting of steels. Metallurgical Research and Technology, 2016, 113, 509.	0.7	11

Polymeric hollow fiber heat exchangers. , 2016, , .

Miroslav RaudenskÃ1/2

#	Article	IF	CITATIONS
37	Hiding Power of Aluminum Metal Pigments Development in the Ball Mill Grinding Process. Solid State Phenomena, 2015, 244, 19-25.	0.3	1
38	Effects of oxide layer on Leidenfrost temperature during spray cooling of steel at high temperatures. International Journal of Heat and Mass Transfer, 2015, 88, 236-246.	4.8	35
39	Influence of the impact angle and pressure on the spray cooling of vertically moving hot steel surfaces. Materiali in Tehnologije, 2015, 49, 333-336.	0.5	2
40	Techniques of measuring spray-cooling homogeneity. Materiali in Tehnologije, 2015, 49, 337-341.	0.5	0
41	Assessments of technology transfer activities of US universities and associated impact of Bayh–Dole Act. Scientometrics, 2014, 101, 1851-1869.	3.0	9
42	Effects of titania nanoparticles on heat transfer performance of spray cooling with full cone nozzle. Applied Thermal Engineering, 2014, 62, 20-27.	6.0	35
43	Performance Evaluations of Technology Transfer Offices of Major US Research Universities. Journal of Technology Management and Innovation, 2014, 9, 93-102.	0.7	28
44	Development of accelerated cooling for new plate mill. Ironmaking and Steelmaking, 2013, 40, 598-604.	2.1	4
45	Measurement of Thermal Load on Working Rolls during Hot Rolling. Steel Research International, 2013, 84, 269-275.	1.8	7
46	IMPINGEMENT FLUX UNIFORMITY IN NOZZLE SPRAYING FOR INDUSTRIAL APPLICATIONS. Atomization and Sprays, 2013, 23, 819-840.	0.8	4
47	Low cost membrane contactors based on hollow fibres. EPJ Web of Conferences, 2012, 25, 01009.	0.3	3
48	Heat transfer of spray cooling using alumina/water nanofluids with full cone nozzles. Heat and Mass Transfer, 2012, 48, 1971-1983.	2.1	18
49	Spray cooling by solid jet nozzles using alumina/water nanofluids. International Journal of Thermal Sciences, 2012, 62, 127-137.	4.9	28
50	In‣ine Heat Treatment and Hot Rolling. , 2011, , .		3
51	Spray cooling by Al <inf>2</inf> 0 <inf>3</inf> and TiO <inf>2</inf> nanoparticles in water. , 2010, , .		3
52	Experimental Technique for Heat Transfer Measurements on Fast Moving Sprayed Surfaces. Journal of ASTM International, 2009, 6, 101801.	0.2	3
53	Hydraulic descaling improvement, findings of jet structure on water hammer effect. Revue De Metallurgie, 2007, 104, 84-90.	0.3	12
54	Influences of interface oxidation on transmission laser bonding of wafers for microsystem packaging. Microsystem Technologies, 2006, 13, 49-59.	2.0	3

Miroslav Raudenský

#	Article	IF	CITATIONS
55	Experimental study of heat transfer in hot rolling. Revue De Metallurgie, 2006, 103, 333-341.	0.3	6
56	Indentation and Piercing of Steel in a Mushy State. Journal of Materials Engineering and Performance, 2005, 14, 610-615.	2.5	1
57	Experimental Study of Heat Transfer in Hot Rolling and Continuous Casting. Materials Science Forum, 2005, 473-474, 347-354.	0.3	5
58	Secondary cooling in continuous casting and Leidenfrost temperature effects. Ironmaking and Steelmaking, 2005, 32, 159-164.	2.1	40
59	Experimental Study of Leidenfrost Phenomena at Hot Sprayed Surface. , 2003, , 355.		1
60	Optimal cooling of rolls in hot rolling. Journal of Materials Processing Technology, 2002, 125-126, 700-705.	6.3	8
61	Deformation behavior of steels in mushy state. Materials & Design, 2001, 22, 83-92.	5.1	28
62	Mechanical Characteristics of Semi-Solid Steels. , 2001, , 99-112.		0
63	Assessment of strategies and potential for neural networks in the inverse heat conduction problem. Inverse Problems in Science and Engineering, 1999, 7, 197-213.	0.5	39
64	Experimental study of long product cooling in hot rolling. Journal of Materials Processing Technology, 1998, 80-81, 337-340.	6.3	14
65	Water spray cooling of stainless and C-Mn steel. Steel Research = Archiv Für Das Eisenhüttenwesen, 1998, 69, 240-246.	0.3	4
66	Thermal expansion and crown evaluations of rolls in rolling processes. Steel Research = Archiv Für Das Eisenhüttenwesen, 1996, 67, 188-199.	0.3	10
67	USAGE OF ARTIFICIAL INTELLIGENCE METHODS IN INVERSE PROBLEMS FOR ESTIMATION OF MATERIAL PARAMETERS. International Journal of Numerical Methods for Heat and Fluid Flow, 1996, 6, 19-29.	2.8	26
68	Usage of neural network for coupled parameter and function specification inverse heat conduction problem. International Communications in Heat and Mass Transfer, 1995, 22, 661-670.	5.6	26
69	GENETIC ALGORITHM IN SOLUTION OF INVERSE HEAT CONDUCTION PROBLEMS. Numerical Heat Transfer, Part B: Fundamentals, 1995, 28, 293-306.	0.9	79
70	Experimental study of cooling characteristics in hot rolling. Journal of Materials Processing Technology, 1994, 45, 131-135.	6.3	11
71	Heat transfer evaluation of impingement cooling in hot rolling of shaped steels. Steel Research = Archiv Für Das Eisenhüttenwesen, 1994, 65, 375-381.	0.3	14
72	Experimental study of heat transfer in process of rolls cooling in rolling mills by water jets. Steel Research = Archiv Für Das Eisenhüttenwesen, 1994, 65, 29-35.	0.3	6

#	Article	IF	CITATIONS
73	HEAT TRANSFER COEFFICIENT ESTIMATION BY INVERSE CONDUCTION ALGORITHM. International Journal of Numerical Methods for Heat and Fluid Flow, 1993, 3, 257-266.	2.8	30
74	Thermal model of rolls and sheets improvement by experimental study of cooling. Journal of Materials Processing Technology, 1992, 34, 247-253.	6.3	2
75	Spray Cooling Unit for Heat Treatment of Stainless Steel Sheets. Advanced Materials Research, 0, 936, 1720-1724.	0.3	1
76	Experimental Technique for Heat Transfer Measurements on Fast Moving Sprayed Surfaces. , 0, , 3-3-13.		0