Karen M Dobos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1012671/publications.pdf

Version: 2024-02-01

84 papers 4,309 citations

145106 33 h-index 63 g-index

90 all docs 90 docs citations

90 times ranked 6462 citing authors

#	Article	IF	CITATIONS
1	Sub-Lineage Specific Phenolic Glycolipid Patterns in the Mycobacterium tuberculosis Complex Lineage 1. Frontiers in Microbiology, 2022, 13, 832054.	1.5	3
2	Extracellular Vesicles in Mycobacteria and Tuberculosis. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	6
3	Methods for Proteomic Analyses of Mycobacteria. Methods in Molecular Biology, 2021, 2314, 533-548.	0.4	1
4	Culturing Mycobacteria. Methods in Molecular Biology, 2021, 2314, 1-58.	0.4	10
5	Extraction and Separation of Mycobacterial Proteins. Methods in Molecular Biology, 2021, 2314, 77-107.	0.4	2
6	Reuse of Disposable Isolation Gowns in Rodent Facilities during a Pandemic. Journal of the American Association for Laboratory Animal Science, 2021, 60, 431-441.	0.6	1
7	Towards a method for cryopreservation of mosquito vectors of human pathogens. Cryobiology, 2021, 99, 1-10.	0.3	5
8	Structural implications of lipoarabinomannan glycans from global clinical isolates in diagnosis of Mycobacterium tuberculosis infection. Journal of Biological Chemistry, 2021, 297, 101265.	1.6	15
9	Early Adoption of Longitudinal Surveillance for SARS-CoV-2 among Staff in Long-Term Care Facilities: Prevalence, Virologic and Sequence Analysis. Microbiology Spectrum, 2021, 9, e0100321.	1.2	18
10	Nontuberculous Mycobacteria Show Differential Infectivity and Use Phospholipids to Antagonize LL-37. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 354-363.	1.4	10
11	Identification of Mycobacterium tuberculosis Peptides in Serum Extracellular Vesicles from Persons with Latent Tuberculosis Infection. Journal of Clinical Microbiology, 2020, 58, .	1.8	25
12	Protein profile of different cellular fractions from Mycobacterium tuberculosis strains after exposure to isoniazid. Data in Brief, 2019, 24, 103953.	0.5	2
13	Mycobacteria and their sweet proteins: An overview of protein glycosylation and lipoglycosylation in M. tuberculosis. Tuberculosis, 2019, 115, 1-13.	0.8	24
14	Moving toward Tuberculosis Elimination. Critical Issues for Research in Diagnostics and Therapeutics for Tuberculosis Infection. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 564-571.	2.5	20
15	Protein Digestion, Ultrafiltration, and Size Exclusion Chromatography to Optimize the Isolation of Exosomes from Human Blood Plasma and Serum. Journal of Visualized Experiments, 2018, , .	0.2	41
16	Cytokine-Mediated Systemic Adverse Drug Reactions in a Drug–Drug Interaction Study of Dolutegravir With Once-Weekly Isoniazid and Rifapentine. Clinical Infectious Diseases, 2018, 67, 193-201.	2.9	49
17	The N-terminal peptide moiety of the <i>Mycobacterium tuberculosis</i> 19 kDa lipoprotein harbors RP105-agonistic properties. Journal of Leukocyte Biology, 2018, 103, 311-319.	1.5	4
18	Deciphering the molecular basis of mycobacteria and lipoglycan recognition by the C-type lectin Dectin-2. Scientific Reports, 2018, 8, 16840.	1.6	34

#	Article	IF	CITATIONS
19	Structural determinants in a glucose-containing lipopolysaccharide from Mycobacterium tuberculosis critical for inducing a subset of protective T cells. Journal of Biological Chemistry, 2018, 293, 9706-9717.	1.6	8
20	Biochemical Characterization of Isoniazid-resistant Mycobacterium tuberculosis: Can the Analysis of Clonal Strains Reveal Novel Targetable Pathways?. Molecular and Cellular Proteomics, 2018, 17, 1685-1701.	2.5	19
21	The Physiology of Mycobacterium tuberculosis in the Context of Drug Resistance: A System Biology Perspective. , 2018, , .		3
22	Second generation multiple reaction monitoring assays for enhanced detection of ultra-low abundance Mycobacterium tuberculosis peptides in human serum. Clinical Proteomics, 2017, 14, 21.	1.1	46
23	HLA-E Presents Glycopeptides from the Mycobacterium tuberculosis Protein MPT32 to Human CD8+ T cells. Scientific Reports, 2017, 7, 4622.	1.6	32
24	Potential of High-Affinity, Slow Off-Rate Modified Aptamer Reagents for Mycobacterium tuberculosis Proteins as Tools for Infection Models and Diagnostic Applications. Journal of Clinical Microbiology, 2017, 55, 3072-3088.	1.8	27
25	Virulence of Mycobacterium tuberculosis after Acquisition of Isoniazid Resistance: Individual Nature of katG Mutants and the Possible Role of AhpC. PLoS ONE, 2016, 11, e0166807.	1.1	32
26	Comparing isogenic strains of Beijing genotype <i>Mycobacterium tuberculosis</i> after acquisition of Isoniazid resistance: A proteomics approach. Proteomics, 2016, 16, 1376-1380.	1.3	11
27	Changes in the Membrane-Associated Proteins of Exosomes Released from Human Macrophages after Mycobacterium tuberculosis Infection. Scientific Reports, 2016, 6, 37975.	1.6	51
28	Boosting BCG-primed responses with a subunit Apa vaccine during the waning phase improves immunity and imparts protection against Mycobacterium tuberculosis. Scientific Reports, 2016, 6, 25837.	1.6	16
29	A Subset of Protective \hat{I}^3 ₉ \hat{I}' ₂ T Cells Is Activated by Novel Mycobacterial Glycolipid Components. Infection and Immunity, 2016, 84, 2449-2462.	1.0	27
30	Longitudinal whole genome analysis of pre and post drug treatment Mycobacterium tuberculosis isolates reveals progressive steps to drug resistance. Tuberculosis, 2016, 98, 50-55.	0.8	18
31	Membrane-Bound PenA \hat{l}^2 -Lactamase of Burkholderia pseudomallei. Antimicrobial Agents and Chemotherapy, 2016, 60, 1509-1514.	1.4	21
32	Analysis of the metabolome of Anopheles gambiae mosquito after exposure to Mycobacterium ulcerans. Scientific Reports, 2015, 5, 9242.	1.6	13
33	The presence of a galactosamine substituent on the arabinogalactan of Mycobacterium tuberculosis abrogates full maturation of human peripheral blood monocyte-derived dendritic cells and increases secretion of IL-10. Tuberculosis, 2015, 95, 476-489.	0.8	12
34	Fractionation and Analysis of Mycobacterial Proteins. Methods in Molecular Biology, 2015, 1285, 47-75.	0.4	7
35	Deciphering the role of exosomes in tuberculosis. Tuberculosis, 2015, 95, 26-30.	0.8	34
36	RP105 Engages Phosphatidylinositol 3-Kinase p110δTo Facilitate the Trafficking and Secretion of Cytokines in Macrophages during Mycobacterial Infection. Journal of Immunology, 2015, 195, 3890-3900.	0.4	26

#	Article	IF	Citations
37	Pathogenic Nontuberculous Mycobacteria Resist and Inactivate Cathelicidin: Implication of a Novel Role for Polar Mycobacterial Lipids. PLoS ONE, 2015, 10, e0126994.	1.1	17
38	The Human Antibody Response to the Surface of Mycobacterium tuberculosis. PLoS ONE, 2014, 9, e98938.	1.1	35
39	Detection of Mycobacterium tuberculosis Peptides in the Exosomes of Patients with Active and Latent M. tuberculosis Infection Using MRM-MS. PLoS ONE, 2014, 9, e103811.	1.1	134
40	Antigen 85 variation across lineages of Mycobacterium tuberculosisâ€"Implications for vaccine and biomarker success. Journal of Proteomics, 2014, 97, 141-150.	1.2	19
41	HspX vaccination and role in virulence in the guinea pig model of tuberculosis. Pathogens and Disease, 2014, 71, 315-325.	0.8	9
42	A Chemical Proteomics Approach to Profiling the ATP-binding Proteome of Mycobacterium tuberculosis. Molecular and Cellular Proteomics, 2013, 12, 1644-1660.	2.5	41
43	O-mannosylation of the Mycobacterium tuberculosis Adhesin Apa Is Crucial for T Cell Antigenicity during Infection but Is Expendable for Protection. PLoS Pathogens, 2013, 9, e1003705.	2.1	30
44	Upregulation of the Phthiocerol Dimycocerosate Biosynthetic Pathway by Rifampin-Resistant, <i>rpoB</i> Mutant Mycobacterium tuberculosis. Journal of Bacteriology, 2012, 194, 6441-6452.	1.0	80
45	Purified protein derivatives of tuberculin — past, present, and future. FEMS Immunology and Medical Microbiology, 2012, 66, 273-280.	2.7	80
46	Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3168-76.	3.3	377
47	Epidemiologic Consequences of Microvariation in Mycobacterium tuberculosis. Journal of Infectious Diseases, 2012, 205, 964-974.	1.9	21
48	HspXâ€mediated protection against tuberculosis depends on its chaperoning of a mycobacterial molecule. Immunology and Cell Biology, 2012, 90, 945-954.	1.0	38
49	Prospective on <i>Mycobacterium tuberculosis</i> Proteomics. Journal of Proteome Research, 2012, 11, 17-25.	1.8	15
50	Deciphering the proteome of the in vivo diagnostic reagent "purified protein derivative―from <i><scp>M</scp>ycobacterium tuberculosis</i> . Proteomics, 2012, 12, 979-991.	1.3	50
51	Assessment of vaccine testing at three laboratories using the guinea pig model of tuberculosis. Tuberculosis, 2012, 92, 105-111.	0.8	24
52	Three Protein Cocktails Mediate Delayed-Type Hypersensitivity Responses Indistinguishable from That Elicited by Purified Protein Derivative in the Guinea Pig Model of <i>Mycobacterium tuberculosis < /i>is Infection. Infection and Immunity, 2011, 79, 716-723.</i>	1.0	25
53	Identification of promoter-binding proteins of the fbp A and C genes in Mycobacterium tuberculosis. Tuberculosis, 2010, 90, 25-30.	0.8	12
54	The non-clonality of drug resistance in Beijing-genotype isolates of Mycobacterium tuberculosis from the Western Cape of South Africa. BMC Genomics, 2010, 11, 670.	1.2	69

#	Article	IF	Citations
55	Descriptive proteomic analysis shows protein variability between closely related clinical isolates of <i>Mycobacterium tuberculosis</i> . Proteomics, 2010, 10, 1966-1984.	1.3	42
56	Proteomic analysis identifies highly antigenic proteins in exosomes from <i>M. tuberculosis</i> à€infected and culture filtrate proteinâ€treated macrophages. Proteomics, 2010, 10, 3190-3202.	1.3	186
57	Immunoproteomic Identification of Human T Cell Antigens of Mycobacterium tuberculosis That Differentiate Healthy Contacts from Tuberculosis Patients. Molecular and Cellular Proteomics, 2010, 9, 538-549.	2.5	27
58	Portrait of a Pathogen: The Mycobacterium tuberculosis Proteome In Vivo. PLoS ONE, 2010, 5, e13938.	1.1	180
59	Variation among Genome Sequences of H37Rv Strains of <i>Mycobacterium tuberculosis</i> from Multiple Laboratories. Journal of Bacteriology, 2010, 192, 3645-3653.	1.0	216
60	Proteomic Definition of the Cell Wall of <i>Mycobacterium tuberculosis</i> . Journal of Proteome Research, 2010, 9, 5816-5826.	1.8	78
61	IFNÎ ³ Response to Mycobacterium tuberculosis, Risk of Infection and Disease in Household Contacts of Tuberculosis Patients in Colombia. PLoS ONE, 2009, 4, e8257.	1.1	90
62	A murine DC-SIGN homologue contributes to early host defense against <i>Mycobacterium tuberculosis</i> . Journal of Experimental Medicine, 2009, 206, 2205-2220.	4.2	98
63	Deciphering the proteomic profile of <i>Mycobacterium leprae</i> cell envelope. Proteomics, 2008, 8, 2477-2491.	1.3	42
64	Conserved Mycobacterial Lipoglycoproteins Activate TLR2 but Also Require Glycosylation for MHC Class II-Restricted T Cell Activation. Journal of Immunology, 2008, 180, 5833-5842.	0.4	26
65	Conserved mycobacterial lipoglycoproteins activate TLR2 but also require glycosylation for antigen presentation to T cells. FASEB Journal, 2008, 22, 421-421.	0.2	0
66	Demonstration of Components of Antigen 85 Complex in Cerebrospinal Fluid of Tuberculous Meningitis Patients. Vaccine Journal, 2005, 12, 752-758.	3.2	44
67	Mycobacterium tuberculosisFunctional Network Analysis by Global Subcellular Protein Profiling. Molecular Biology of the Cell, 2005, 16, 396-404.	0.9	202
68	Peripheral Blood and Pleural Fluid Mononuclear Cell Responses to Low-Molecular-Mass Secretory Polypeptides of Mycobacterium tuberculosis in Human Models of Immunity to Tuberculosis. Infection and Immunity, 2005, 73, 3547-3558.	1.0	32
69	Risk Factors for Buruli Ulcer Disease (Mycobacterium ulcerans Infection): Results from a Case-Control Study in Ghana. Clinical Infectious Diseases, 2005, 40, 1445-1453.	2.9	138
70	Proteomic Approaches to Antigen Discovery. , 2004, 94, 3-18.		5
71	A Limited Antigen-Specific Cellular Response Is Sufficient for the Early Control of Mycobacterium tuberculosis in the Lung but Is Insufficient for Long-Term Survival. Infection and Immunity, 2004, 72, 3759-3768.	1.0	15
72	Quantitative analysis of phagolysosome fusion in intact cells: inhibition by mycobacterial lipoarabinomannan and rescue by an 1α,25-dihydroxyvitamin D3–phosphoinositide 3-kinase pathway. Journal of Cell Science, 2004, 117, 2131-2140.	1,2	142

#	Article	IF	CITATIONS
73	<i>Mycobacterium tuberculosis</i> LprG (<i>Rv1411c</i>): A Novel TLR-2 Ligand That Inhibits Human Macrophage Class II MHC Antigen Processing. Journal of Immunology, 2004, 173, 2660-2668.	0.4	231
74	Continued proteomic analysis of Mycobacterium leprae subcellular fractions. Proteomics, 2004, 4, 2942-2953.	1.3	45
75	BURULI ULCER AND SCHISTOSOMIASIS: NO ASSOCIATION FOUND. American Journal of Tropical Medicine and Hygiene, 2004, 71, 318-321.	0.6	13
76	Buruli ulcer and schistosomiasis: no association found. American Journal of Tropical Medicine and Hygiene, 2004, 71, 318-21.	0.6	4
77	Comprehensive Proteomic Profiling of the Membrane Constituents of a Mycobacterium tuberculosis Strain. Molecular and Cellular Proteomics, 2003, 2, 1284-1296.	2.5	186
78	Mycobacterium ulcerans Cytotoxicity in an Adipose Cell Model. Infection and Immunity, 2001, 69, 7182-7186.	1.0	45
79	Necrosis of Lung Epithelial Cells during Infection with Mycobacterium tuberculosis Is Preceded by Cell Permeation. Infection and Immunity, 2000, 68, 6300-6310.	1.0	102
80	Necrosis of Lung Epithelial Cells during Infection with Mycobacterium tuberculosis Is Preceded by Cell Permeation. Infection and Immunity, 2000, 68, 6300-6310.	1.0	11
81	Serologic Response to Culture Filtrate Antigens of Mycobacterium ulcerans during Buruli Ulcer Disease. Emerging Infectious Diseases, 2000, 6, 158-164.	2.0	48
82	Emergence of a Unique Group of Necrotizing Mycobacterial Diseases. Emerging Infectious Diseases, 1999, 5, 367-378.	2.0	83
83	Definition of the full extent of glycosylation of the 45-kilodalton glycoprotein of Mycobacterium tuberculosis. Journal of Bacteriology, 1996, 178, 2498-2506.	1.0	176
84	Mycobacterium ulcerans Infection and Buruli Ulcer Disease: Emergence of a Public Health Dilemma. , 0, , 137-152.		4