Guoqiang Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1012554/publications.pdf

Version: 2024-02-01

101	7,302	50	83
papers	citations	h-index	g-index
105	105	105	5958
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hierarchical bismuth composite for fast lithium storage: Carbon dots tuned interfacial interaction. Energy Storage Materials, 2022, 44, 145-155.	18.0	35
2	Recent advances of composite electrolytes for solid-state Li batteries. Journal of Energy Chemistry, 2022, 67, 524-548.	12.9	47
3	Zintl chemistry: Current status and future perspectives. Chemical Engineering Journal, 2022, 433, 133841.	12.7	11
4	Highâ€Throughput Production of Cheap Mineralâ€Based Heterostructures for High Power Sodium Ion Capacitors. Advanced Functional Materials, 2022, 32, .	14.9	75
5	Atomical Reconstruction and Cationic Reordering for Nickelâ€Rich Layered Cathodes. Advanced Energy Materials, 2022, 12, .	19.5	67
6	Ultra-Low-Dose Pre-Metallation Strategy Served for Commercial Metal-Ion Capacitors. Nano-Micro Letters, 2022, 14, 53.	27.0	65
7	Chemical-Mechanical Effects in Ni-Rich Cathode Materials. Chemistry of Materials, 2022, 34, 1509-1523.	6.7	34
8	Enabling the sustainable recycling of LiFePO ₄ from spent lithium-ion batteries. Green Chemistry, 2022, 24, 2506-2515.	9.0	68
9	Electrochemical Zintl Cluster Bi22â^' induced chemically bonded bismuth / graphene oxide composite for sodium-ion batteries. Electrochimica Acta, 2022, 413, 140174.	5.2	4
10	Advanced Preâ€Diagnosis Method of Biomass Intermediates Toward High Energy Dualâ€Carbon Potassiumâ€lon Capacitor. Advanced Energy Materials, 2022, 12, .	19.5	76
11	Carbon Dotsâ€Regulated Pomegranateâ€Like Metal Oxide Composites: From Growth Mechanism to Lithium Storage. Small Methods, 2022, 6, e2200245.	8.6	5
12	Bi-doped carbon dots for a stable lithium metal anode. Chemical Communications, 2022, 58, 6449-6452.	4.1	10
13	High‥ield Carbon Dots Interlayer for Ultra‧table Zinc Batteries. Advanced Energy Materials, 2022, 12, .	19.5	90
14	Mitigating the Jahn-Teller distortion driven by the spin-orbit coupling of lithium manganate cathode. Journal of Energy Chemistry, 2022, 72, 379-387.	12.9	11
15	Enabling Reversible Reaction by Uniform Distribution of Heterogeneous Intermediates on Defectâ€Rich SnSSe/C Layered Heterostructure for Ultralongâ€Cycling Sodium Storage. Small, 2022, 18, .	10.0	14
16	Trace tea polyphenols enabling reversible dendrite-free zinc anode. Journal of Colloid and Interface Science, 2022, 624, 450-459.	9.4	18
17	Bi Dots Confined by Functional Carbon as Highâ€Performance Anode for Lithium Ion Batteries. Advanced Functional Materials, 2021, 31, 2000756.	14.9	84
18	Garnet Solid Electrolyte for Advanced Allâ€Solidâ€State Li Batteries. Advanced Energy Materials, 2021, 11, 2000648.	19.5	182

#	Article	IF	Citations
19	Electrochemically intercalated intermediate induced exfoliation of few-layer MoS2 from molybdenite for long-life sodium storage. Science China Materials, 2021, 64, 115-127.	6.3	22
20	Highly stable zinc metal anode enabled by oxygen functional groups for advanced Zn-ion supercapacitors. Chemical Communications, 2021, 57, 528-531.	4.1	29
21	Advanced Carbon Materials for Sodiumâ€lon Capacitors. Batteries and Supercaps, 2021, 4, 538-553.	4.7	27
22	Boosting the ionic conductivity of PEO electrolytes by waste eggshell-derived fillers for high-performance solid lithium/sodium batteries. Materials Chemistry Frontiers, 2021, 5, 1315-1323.	5.9	38
23	Prelithiation/Presodiation Techniques for Advanced Electrochemical Energy Storage Systems: Concepts, Applications, and Perspectives. Advanced Functional Materials, 2021, 31, 2005581.	14.9	138
24	Interfacial regulation of dendrite-free zinc anodes through a dynamic hydrophobic molecular membrane. Journal of Materials Chemistry A, 2021, 9, 14265-14269.	10.3	10
25	Olivine LiMn _x Fe _{1â^'x} PO ₄ cathode materials for lithium ion batteries: restricted factors of rate performances. Journal of Materials Chemistry A, 2021, 9, 14214-14232.	10.3	60
26	Electrochemically captured Zintl cluster-induced bismuthene for sodium-ion storage. Chemical Communications, 2021, 57, 2396-2399.	4.1	13
27	Liquid Alloy Interlayer for Aqueous Zinc-Ion Battery. ACS Energy Letters, 2021, 6, 675-683.	17.4	135
28	Comprehensive Understanding of Sodiumâ€lon Capacitors: Definition, Mechanisms, Configurations, Materials, Key Technologies, and Future Developments. Advanced Energy Materials, 2021, 11, 2003804.	19.5	105
29	Kilogram-Scale Synthesis and Functionalization of Carbon Dots for Superior Electrochemical Potassium Storage. ACS Nano, 2021, 15, 6872-6885.	14.6	184
30	Demystifying the Lattice Oxygen Redox in Layered Oxide Cathode Materials of Lithium-Ion Batteries. ACS Nano, 2021, 15, 6061-6104.	14.6	77
31	Functionalized carbon dots for advanced batteries. Energy Storage Materials, 2021, 37, 8-39.	18.0	116
32	Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy, 2021, 83, 105854.	16.0	264
33	Heterogeneous Interface Design for Enhanced Sodium Storage: Sb Quantum Dots Confined by Functional Carbon. Small Methods, 2021, 5, e2100188.	8.6	17
34	Stabilizing Intermediate Phases via Efficient Entrapment Effects of Layered VS ₄ /SnS@C Heterostructure for Ultralong Lifespan Potassiumâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2103802.	14.9	81
35	Molecularly Compensated Preâ€Metallation Strategy for Metalâ€lon Batteries and Capacitors. Angewandte Chemie, 2021, 133, 17207-17216.	2.0	4
36	Molecularly Compensated Preâ€Metallation Strategy for Metalâ€Ion Batteries and Capacitors. Angewandte Chemie - International Edition, 2021, 60, 17070-17079.	13.8	52

#	Article	IF	Citations
37	Structure and Interface Modification of Carbon Dots for Electrochemical Energy Application. Small, 2021, 17, e2102091.	10.0	36
38	Solid Solution Metal Chalcogenides for Sodium″on Batteries: The Recent Advances as Anodes. Small, 2021, 17, e2101058.	10.0	45
39	Electrochemically Engineering Antimony Interspersed on Graphene toward Advanced Sodium-Storage Anodes. Inorganic Chemistry, 2021, 60, 12526-12535.	4.0	2
40	Ironâ€Based Layered Cathodes for Sodiumâ€Ion Batteries. Batteries and Supercaps, 2021, 4, 1657-1679.	4.7	19
41	Carbon Dots Evoked Li Ion Dynamics for Solid State Battery. Small, 2021, 17, e2102978.	10.0	54
42	Highly efficient re-cycle/generation of LiCoO2 cathode assisted by 2-naphthalenesulfonic acid. Journal of Hazardous Materials, 2021, 416, 126114.	12.4	16
43	Interfacially Redistributed charge for robust lithium metal anode. Nano Energy, 2021, 87, 106212.	16.0	48
44	Presodiation Strategies for the Promotion of Sodiumâ€Based Energy Storage Systems. Chemistry - A European Journal, 2021, 27, 16082-16092.	3.3	15
45	Revealing dual capacitive mechanism of carbon cathode toward ultrafast quasi-solid-state lithium ion capacitors. Journal of Energy Chemistry, 2021, 60, 209-221.	12.9	33
46	Functional carbon materials processed by NH3 plasma for advanced full-carbon sodium-ion capacitors. Chemical Engineering Journal, 2021, 420, 129647.	12.7	32
47	Liquid Alloying Na–K for Sodium Metal Anodes. Journal of Physical Chemistry Letters, 2021, 12, 9321-9327.	4.6	9
48	Element substitution of a spinel LiMn ₂ O ₄ cathode. Journal of Materials Chemistry A, 2021, 9, 21532-21550.	10.3	51
49	A high-rate capability LiFePO < sub > 4 < / sub > /C cathode achieved by the modulation of the band structures. Journal of Materials Chemistry A, 2021, 9, 24686-24694.	10.3	28
50	MnO ₂ Nanowires Anchored with Graphene Quantum Dots for Stable Aqueous Zinc-lon Batteries. ACS Applied Energy Materials, 2021, 4, 10940-10947.	5.1	17
51	Coupling regeneration strategy of lithium-ion electrode materials turned with naphthalenedisulfonic acid. Waste Management, 2021, 136, 1-10.	7.4	3
52	Electronic Effect and Regiochemistry of Substitution in Pre-sodiation Chemistry. Journal of Physical Chemistry Letters, 2021, 12, 11968-11979.	4.6	7
53	H ⁺ â€Insertion Boosted αâ€MnO ₂ for an Aqueous Znâ€Ion Battery. Small, 2020, 16, e1905842.	10.0	260
54	Graphitic Carbon Quantum Dots Modified Nickel Cobalt Sulfide as Cathode Materials for Alkaline Aqueous Batteries. Nano-Micro Letters, 2020, 12, 16.	27.0	114

#	Article	IF	Citations
55	Recent progress on electrolyte additives for stable lithium metal anode. Energy Storage Materials, 2020, 32, 306-319.	18.0	126
56	Advanced Batteryâ€Type Anode Materials for Highâ€Performance Sodiumâ€Ion Capacitors. Small Methods, 2020, 4, 2000401.	8.6	56
57	Pseudoâ€Bonding and Electricâ€Field Harmony for Liâ€Rich Mnâ€Based Oxide Cathode. Advanced Functional Materials, 2020, 30, 2004302.	14.9	149
58	Biâ€Based Electrode Materials for Alkali Metalâ€Ion Batteries. Small, 2020, 16, e2004022.	10.0	71
59	Insights into Enhanced Capacitive Behavior of Carbon Cathode for Lithium Ion Capacitors: The Coupling of Pore Size and Graphitization Engineering. Nano-Micro Letters, 2020, 12, 121.	27.0	111
60	High Sulfur-Doped Hard Carbon with Advanced Potassium Storage Capacity via a Molten Salt Method. ACS Applied Materials & Samp; Interfaces, 2020, 12, 30431-30437.	8.0	58
61	Defect Rich Hierarchical Porous Carbon for High Power Supercapacitors. Frontiers in Chemistry, 2020, 8, 43.	3.6	27
62	Manganeseâ€based layered oxide cathodes for sodium ion batteries. Nano Select, 2020, 1, 200-225.	3.7	25
63	Nitrogen-doped Carbon Coated Na3V2(PO4)3 with Superior Sodium Storage Capability. Chemical Research in Chinese Universities, 2020, 36, 459-466.	2.6	34
64	Voltageâ€Induced Highâ€Efficient In Situ Presodiation Strategy for Sodium Ion Capacitors. Small Methods, 2020, 4, 1900763.	8.6	60
65	Quinone/ester-based oxygen functional group-incorporated full carbon Li-ion capacitor for enhanced performance. Nanoscale, 2020, 12, 3677-3685.	5.6	64
66	Phase-Controllable Cobalt Phosphides Induced through Hydrogel for Higher Lithium Storages. Inorganic Chemistry, 2020, 59, 6471-6480.	4.0	4
67	Hierarchical NiS ₂ Modified with Bifunctional Carbon for Enhanced Potassium″on Storage. Advanced Functional Materials, 2019, 29, 1903454.	14.9	109
68	Chemâ€Bonding and Physâ€Trapping Se Electrode for Longâ€Life Rechargeable Batteries. Advanced Functional Materials, 2019, 29, 1809014.	14.9	36
69	Composition Engineering Boosts Voltage Windows for Advanced Sodium-Ion Batteries. ACS Nano, 2019, 13, 10787-10797.	14.6	90
70	Li ₄ Ti ₅ O ₁₂ quantum dot decorated carbon frameworks from carbon dots for fast lithium ion storage. Materials Chemistry Frontiers, 2019, 3, 1761-1767.	5.9	18
71	A kinetically well-matched full-carbon sodium-ion capacitor. Journal of Materials Chemistry A, 2019, 7, 13540-13549.	10.3	116
72	Bi ₂ MoO ₆ Microsphere with Double-Polyaniline Layers toward Ultrastable Lithium Energy Storage by Reinforced Structure. Inorganic Chemistry, 2019, 58, 6410-6421.	4.0	26

#	Article	IF	Citations
73	Electrochemically Modulated LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂ Cathodes for Lithiumâ€lon Batteries. Small Methods, 2019, 3, 1900065.	8.6	24
74	Surfaceâ€Driven Energy Storage Behavior of Dualâ€Heteroatoms Functionalized Carbon Material. Advanced Functional Materials, 2019, 29, 1900941.	14.9	68
75	General Synthesis of Heteroatomâ€Doped Hierarchical Carbon toward Excellent Electrochemical Energy Storage. Batteries and Supercaps, 2019, 2, 712-722.	4.7	27
76	The bond evolution mechanism of covalent sulfurized carbon during electrochemical sodium storage process. Science China Materials, 2019, 62, 1127-1138.	6.3	58
77	Rod‣ike Sb ₂ MoO ₆ : Structure Evolution and Sodium Storage for Sodiumâ€lon Batteries. Small Methods, 2019, 3, 1800533.	8.6	26
78	Single Particle Electrochemistry of Collision. Small, 2019, 15, e1804908.	10.0	33
79	Yolk–Shell-Structured Bismuth@N-Doped Carbon Anode for Lithium-Ion Battery with High Volumetric Capacity. ACS Applied Materials & Interfaces, 2019, 11, 10829-10840.	8.0	132
80	Monocrystal Cu 3 Mo 2 O 9 Confined in Polyaniline Protective Layer: an Effective Strategy for Promoting Lithium Storage Stability. ChemElectroChem, 2019, 6, 1688-1695.	3.4	12
81	Hierarchical Hollowâ€Microsphere Metal–Selenide@Carbon Composites with Rational Surface Engineering for Advanced Sodium Storage. Advanced Energy Materials, 2019, 9, 1803035.	19.5	234
82	Ultrafast Sodium Full Batteries Derived from XFe (X = Co, Ni, Mn) Prussian Blue Analogs. Advanced Materials, 2019, 31, e1806092.	21.0	132
83	Controllable Chainâ€Length for Covalent Sulfur–Carbon Materials Enabling Stable and Highâ€Capacity Sodium Storage. Advanced Energy Materials, 2019, 9, 1803478.	19.5	145
84	Electrochemically Exfoliated Phosphorene–Graphene Hybrid for Sodiumâ€lon Batteries. Small Methods, 2019, 3, 1800328.	8.6	66
85	Electrochemical exfoliation of graphene-like two-dimensional nanomaterials. Nanoscale, 2019, 11, 16-33.	5.6	184
86	N-rich carbon coated CoSnO ₃ derived from <i>in situ</i> construction of a Co–MOF with enhanced sodium storage performance. Journal of Materials Chemistry A, 2018, 6, 4839-4847.	10.3	84
87	Dual Functions of Potassium Antimony(III)â€Tartrate in Tuning Antimony/Carbon Composites for Longâ€Life Naâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1705744.	14.9	42
88	Perovskite ABO ₃ â€Type MOFâ€Derived Carbon Decorated Fe ₃ O ₄ with Enhanced Lithium Storage Performance. ChemElectroChem, 2018, 5, 3426-3436.	3.4	9
89	Evaluating the influences of the sulfur content in precursors on the structure and sodium storage performances of carbon materials. Journal of Materials Chemistry A, 2018, 6, 11488-11495.	10.3	27
90	Advanced Hierarchical Vesicular Carbon Coâ€Doped with S, P, N for Highâ€Rate Sodium Storage. Advanced Science, 2018, 5, 1800241.	11.2	225

#	Article	lF	CITATIONS
91	Energy Storage: Largeâ€Area Carbon Nanosheets Doped with Phosphorus: A Highâ€Performance Anode Material for Sodiumâ€lon Batteries (Adv. Sci. 1/2017). Advanced Science, 2017, 4, .	11.2	3
92	Synergistic effect of cross-linked carbon nanosheet frameworks and Sb on the enhancement of sodium storage performances. New Journal of Chemistry, 2017, 41, 13724-13731.	2.8	12
93	3D hollow porous carbon microspheres derived from Mn-MOFs and their electrochemical behavior for sodium storage. Journal of Materials Chemistry A, 2017, 5, 23550-23558.	10.3	69
94	Preparation of S/N-codoped carbon nanosheets with tunable interlayer distance for high-rate sodium-ion batteries. Green Chemistry, 2017, 19, 4622-4632.	9.0	81
95	Controllable Interlayer Spacing of Sulfurâ€Doped Graphitic Carbon Nanosheets for Fast Sodiumâ€lon Batteries. Small, 2017, 13, 1700762.	10.0	144
96	Nitrogen Doped/Carbon Tuning Yolkâ€Like TiO ₂ and Its Remarkable Impact on Sodium Storage Performances. Advanced Energy Materials, 2017, 7, 1600173.	19.5	159
97	Largeâ€Area Carbon Nanosheets Doped with Phosphorus: A Highâ€Performance Anode Material for Sodiumâ€Ion Batteries. Advanced Science, 2017, 4, 1600243.	11.2	450
98	Black Anatase Titania with Ultrafast Sodium-Storage Performances Stimulated by Oxygen Vacancies. ACS Applied Materials & Diterfaces, 2016, 8, 9142-9151.	8.0	193
99	Grapheneâ€Rich Wrapped Petalâ€Like Rutile TiO ₂ tuned by Carbon Dots for Highâ€Performance Sodium Storage. Advanced Materials, 2016, 28, 9391-9399.	21.0	262
100	Sizeâ€Tunable Oliveâ€Like Anatase TiO ₂ Coated with Carbon as Superior Anode for Sodiumâ€Ion Batteries. Small, 2016, 12, 5554-5563.	10.0	76
101	Pinecone-like hierarchical anatase TiO ₂ bonded with carbon enabling ultrahigh cycling rates for sodium storage. Journal of Materials Chemistry A, 2016, 4, 12591-12601.	10.3	78