Gloria Oporto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1012320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Micro- and Nanofibrillated Cellulose (MNFC) from Pineapple (<i>Ananas comosus</i>) Stems and Their Application on Polyvinyl Acetate (PVAc) and Urea-Formaldehyde (UF) Wood Adhesives. Journal of Nanomaterials, 2020, 2020, 1-12.	1.5	12
2	Compression Properties and Its Prediction of Wood-Based Sandwich Panels with a Novel Taiji Honeycomb Core. Forests, 2020, 11, 886.	0.9	5
3	Structural analysis and strength-to-weight optimization of wood-based sandwich composite with honeycomb core under three-point flexural test. European Journal of Wood and Wood Products, 2020, 78, 1195-1207.	1.3	27
4	Evaluation of Acetaminophen Release from Biodegradable Poly (Vinyl Alcohol) (PVA) and Nanocellulose Films Using a Multiphase Release Mechanism. Nanomaterials, 2020, 10, 301.	1.9	18
5	Short Rotation Wood Crops in Latin American: A Review on Status and Potential Uses as Biofuel. Energies, 2019, 12, 705.	1.6	28
6	Deformation and Failure Behavior of Wooden Sandwich Composites with Taiji Honeycomb Core under a Three-Point Bending Test. Materials, 2018, 11, 2325.	1.3	11
7	Nanocellulose in Combination with Inorganic/Organic Biocides for Food Film Packaging Applications - Safety Issues Review. , 2018, , 331-353.		1
8	Antimicrobial food packaging with cellulose-copper nanoparticles embedded in thermoplastic resins. , 2017, , 671-702.		6
9	Nanofibrillated Cellulose from Appalachian Hardwoods Logging Residues as Template for Antimicrobial Copper. Journal of Nanomaterials, 2017, 2017, 1-14.	1.5	8
10	Lignocellulosic Micro- and Nanomaterials as Copper Frames for the Evaluation of the Copper(I)-Catalyzed Azide-Alkyne Cycloaddition. Journal of Nanomaterials, 2017, 2017, 1-6.	1.5	8
11	Proteomic and genetic analysis of the response of S. cerevisiae to soluble copper leads to improvement of the antimicrobial function of cellulosic copper nanoparticles. Metallomics, 2017, 9, 1304-1315.	1.0	28
12	TEMPO nanofibrillated cellulose as template for controlled release of antimicrobial copper from PVA films. Cellulose, 2016, 23, 713-722.	2.4	17
13	Nanofibrillated Cellulose and Copper Nanoparticles Embedded in Polyvinyl Alcohol Films for Antimicrobial Applications. BioMed Research International, 2015, 2015, 1-8.	0.9	20
14	Drying cellulose-based materials containing copper nanoparticles. Cellulose, 2015, 22, 2665-2681.	2.4	17
15	Understanding the Affinity between Components of Wood–Plastic Composites from a Surface Energy Perspective. Journal of Adhesion Science and Technology, 2011, 25, 1785-1801.	1.4	10
16	Adhesion and Surface Issues in Cellulose and Nanocellulose. Journal of Adhesion Science and Technology, 2008, 22, 545-567.	1.4	434