Fei Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10122806/publications.pdf Version: 2024-02-01

FEI CHANC

#	Article	IF	CITATIONS
1	Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nature Chemistry, 2017, 9, 64-70.	6.6	451
2	Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers. Nature Energy, 2018, 3, 1067-1075.	19.8	207
3	Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: Recent progress. International Journal of Hydrogen Energy, 2019, 44, 7746-7767.	3.8	166
4	Emerging Materials and Methods toward Ammoniaâ€Based Energy Storage and Conversion. Advanced Materials, 2021, 33, e2005721.	11.1	137
5	Barium Hydride-Mediated Nitrogen Transfer and Hydrogenation for Ammonia Synthesis: A Case Study of Cobalt. ACS Catalysis, 2017, 7, 3654-3661.	5.5	136
6	Alkali and Alkaline Earth Hydrides-Driven N ₂ Activation and Transformation over Mn Nitride Catalyst. Journal of the American Chemical Society, 2018, 140, 14799-14806.	6.6	81
7	The Formation of Surface Lithium–Iron Ternary Hydride and its Function on Catalytic Ammonia Synthesis at Low Temperatures. Angewandte Chemie - International Edition, 2017, 56, 8716-8720.	7.2	58
8	Highly Active MnN–Li ₂ NH Composite Catalyst for Producing CO _{<i>x</i>} -Free Hydrogen. ACS Catalysis, 2015, 5, 2708-2713.	5.5	53
9	Potassium hydride-intercalated graphite as an efficient heterogeneous catalyst for ammonia synthesis. Nature Catalysis, 2022, 5, 222-230.	16.1	37
10	Covalent triazine-based framework as an efficient catalyst support for ammonia decomposition. RSC Advances, 2015, 5, 3605-3610.	1.7	31
11	Ammonia Decomposition with Manganese Nitride–Calcium Imide Composites as Efficient Catalysts. ChemSusChem, 2016, 9, 364-369.	3.6	28
12	Transition and Alkali Metal Complex Ternary Amides for Ammonia Synthesis and Decomposition. Chemistry - A European Journal, 2017, 23, 9766-9771.	1.7	28
13	Effect of Pore Confinement of NaNH ₂ and KNH ₂ on Hydrogen Generation from Ammonia. Journal of Physical Chemistry C, 2019, 123, 21487-21496.	1.5	26
14	Lithium Imide Synergy with 3d Transitionâ€Metal Nitrides Leading to Unprecedented Catalytic Activities for Ammonia Decomposition. Angewandte Chemie, 2015, 127, 2993-2997.	1.6	18
15	The Formation of Surface Lithium–Iron Ternary Hydride and its Function on Catalytic Ammonia Synthesis at Low Temperatures. Angewandte Chemie, 2017, 129, 8842-8846.	1.6	16
16	Carbonâ€Supported Potassium Hydride for Efficient Lowâ€Temperature Desulfurization. Chemistry - A European Journal, 0, , .	1.7	2