
Diane Dalecki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1012240/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Time- and Dose-Dependent Effects of Pulsed Ultrasound on Dermal Repair in Diabetic Mice. Ultrasound in Medicine and Biology, 2021, 47, 1054-1066.	0.7	5
2	Diagnostic Ultrasound Safety Review for Pointâ€of are Ultrasound Practitioners. Journal of Ultrasound in Medicine, 2020, 39, 1069-1084.	0.8	33
3	Acoustic Fabrication of Collagen–Fibronectin Composite Gels Accelerates Microtissue Formation. Applied Sciences (Switzerland), 2020, 10, 2907.	1.3	4
4	Using Acoustic Fields to Fabricate ECM-Based Biomaterials for Regenerative Medicine Applications. , 2020, 2, 1-24.		4
5	Non-invasive acoustic fabrication methods to enhance collagen hydrogel bioactivity. Materials Research Express, 2019, 6, 125410.	0.8	4
6	Viscoelastic characterization of dispersive media by inversion of a general wave propagation model in optical coherence elastography. , 2018, , .		1
7	Ultrasound patterning technologies for studying vascular morphogenesis in 3D. Journal of Cell Science, 2017, 130, 232-242.	1.2	26
8	Advancing Ultrasound Technologies for Tissue Engineering. , 2016, , 1101-1126.		1
9	Comparison of Thermal Safety Practice Guidelines forÂDiagnostic Ultrasound Exposures. Ultrasound in Medicine and Biology, 2016, 42, 345-357.	0.7	25
10	Quantitative Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials. Annals of Biomedical Engineering, 2016, 44, 636-648.	1.3	16
11	Biological Effects of Low-Frequency Shear Strain: PhysicalÂDescriptors. Ultrasound in Medicine and Biology, 2016, 42, 1-15.	0.7	4
12	Scholte wave generation during single tracking location shear wave elasticity imaging of engineered tissues. Journal of the Acoustical Society of America, 2015, 138, EL138-EL144.	0.5	20
13	Noninvasive Quantitative Imaging of Collagen Microstructure in Three-Dimensional Hydrogels Using High-Frequency Ultrasound. Tissue Engineering - Part C: Methods, 2015, 21, 671-682.	1.1	32
14	Advancing Ultrasound Technologies for Tissue Engineering. , 2015, , 1-26.		3
15	Ultrasound Technologies for Biomaterials Fabrication and Imaging. Annals of Biomedical Engineering, 2015, 43, 747-761.	1.3	25
16	Guiding tissue regeneration with ultrasound in vitro and in vivo. Proceedings of SPIE, 2015, , .	0.8	3
17	Estimating Cell Concentration in Three-Dimensional Engineered Tissues Using High Frequency Quantitative Ultrasound. Annals of Biomedical Engineering, 2014, 42, 1292-1304.	1.3	38
18	Controlling collagen fiber microstructure in three-dimensional hydrogels using ultrasound. Journal of the Acoustical Society of America, 2013, 134, 1491-1502.	0.5	33

#	Article	IF	CITATIONS
19	Fibronectin Matrix Mimetics Promote Full-Thickness Wound Repair in Diabetic Mice. Tissue Engineering - Part A, 2013, 19, 2517-2526.	1.6	24
20	Three-dimensional volume analysis of vasculature in engineered tissues. Proceedings of SPIE, 2013, , .	0.8	1
21	Spatial patterning of endothelial cells and vascular network formation using ultrasound standing wave fields. Journal of the Acoustical Society of America, 2013, 134, 1483-1490.	0.5	34
22	Regional Fibronectin and Collagen Fibril Co-Assembly Directs Cell Proliferation and Microtissue Morphology. PLoS ONE, 2013, 8, e77316.	1.1	33
23	Vascularization of Three-Dimensional Collagen Hydrogels Using Ultrasound Standing Wave Fields. Ultrasound in Medicine and Biology, 2011, 37, 1853-1864.	0.7	46
24	Natural frequencies of two bubbles in a compliant tube: Analytical, simulation, and experimental results. Journal of the Acoustical Society of America, 2011, 130, 3347-3356.	0.5	3
25	Shear strain from irrotational tissue displacements near bubbles. Journal of the Acoustical Society of America, 2011, 130, 3467-3471.	0.5	1
26	Controlling the Spatial Organization of Cells and Extracellular Matrix Proteins in Engineered Tissues Using Ultrasound Standing Wave Fields. Ultrasound in Medicine and Biology, 2010, 36, 1919-1932.	0.7	55
27	Extracellular Matrix Fibronectin Stimulates the Self-Assembly of Microtissues on Native Collagen Gels. Tissue Engineering - Part A, 2010, 16, 3805-3819.	1.6	51
28	Natural frequency of a gas bubble in a tube: Experimental and simulation results. Journal of the Acoustical Society of America, 2009, 126, EL34-EL40.	0.5	16
29	EFFECTS OF UNDERWATER SOUND FIELDS ON TISSUES CONTAINING GAS. Bioacoustics, 2008, 17, 299-301.	0.7	1
30	Ultrasonic excitation of a bubble inside a deformable tube: Implications for ultrasonically induced hemorrhage. Journal of the Acoustical Society of America, 2008, 124, 2374-2384.	0.5	67
31	Fetal Ultrasound. Journal of Ultrasound in Medicine, 2008, 27, 597-605.	0.8	55
32	WFUMB safety symposium on echo-contrast agents: Bioeffects of ultrasound contrast agents in vivo. Ultrasound in Medicine and Biology, 2007, 33, 205-213.	0.7	35
33	Detection of acoustic cavitation in the heart with microbubble contrast agentsin vivo: A mechanism for ultrasound-induced arrhythmias. Journal of the Acoustical Society of America, 2006, 120, 2958-2964.	0.5	27
34	Biological Effects of Microbubble-Based Ultrasound Contrast Agents. , 2005, , 77-85.		11
35	Ultrasonic excitation of a bubble near a rigid or deformable sphere: Implications for ultrasonically induced hemolysis. Journal of the Acoustical Society of America, 2005, 117, 1440-1447.	0.5	35
36	Premature cardiac contractions produced by ultrasound and microbubble contrast agents in mice. Acoustics Research Letters Online: ARLO, 2005, 6, 221-226.	0.7	16

#	Article	IF	CITATIONS
37	Low-intensity ultrasound increases endothelial cell nitric oxide synthase activity and nitric oxide synthesis. Journal of Thrombosis and Haemostasis, 2004, 2, 637-643.	1.9	85
38	Mechanical Bioeffects of Ultrasound. Annual Review of Biomedical Engineering, 2004, 6, 229-248.	5.7	454
39	The search for cavitation in vivo. Ultrasound in Medicine and Biology, 2000, 26, 1377-1385.	0.7	101
40	Bioeffects of positive and negative acoustic pressures in mice infused with microbubbles. Ultrasound in Medicine and Biology, 2000, 26, 1327-1332.	0.7	46
41	Hemorrhage in murine fetuses exposed to pulsed ultrasound. Ultrasound in Medicine and Biology, 1999, 25, 1139-1144.	0.7	23
42	Enhancement of Fibrinolysis With 40-kHz Ultrasound. Circulation, 1998, 98, 1030-1035.	1.6	167
43	Hemolysis in vivo from exposure to pulsed ultrasound. Ultrasound in Medicine and Biology, 1997, 23, 307-313.	0.7	119
44	Effects of pulsed ultrasound on the frog heart: III. The radiation force mechanism. Ultrasound in Medicine and Biology, 1997, 23, 275-285.	0.7	79
45	Thresholds for fetal hemorrhages produced by a piezoelectric lithotripter. Ultrasound in Medicine and Biology, 1997, 23, 287-297.	0.7	29
46	Thresholds for premature contractions in murine hearts exposed to pulsed ultrasound. Ultrasound in Medicine and Biology, 1997, 23, 761-765.	0.7	51
47	Ultrasonically induced lung hemorrhage in young swine. Ultrasound in Medicine and Biology, 1997, 23, 777-781.	0.7	77
48	Age dependence of ultrasonically induced lung hemorrhage in mice. Ultrasound in Medicine and Biology, 1997, 23, 767-776.	0.7	68
49	Remnants of Albunex® nucleate acoustic cavitation. Ultrasound in Medicine and Biology, 1997, 23, 1405-1412.	0.7	60
50	The influence of contrast agents on hemorrhage produced by lithotripter fields. Ultrasound in Medicine and Biology, 1997, 23, 1435-1439.	0.7	88
51	Exposure-time dependence of the threshold for ultrasonically induced murine lung hemorrhage. Ultrasound in Medicine and Biology, 1996, 22, 139-141.	0.7	57
52	A test for cavitation as a mechanism for intestinal hemorrhage in mice exposed to a piezoelectric lithotripter. Ultrasound in Medicine and Biology, 1996, 22, 493-496.	0.7	39
53	Thresholds for ultrasonically induced lung hemorrhage in neonatal swine. Ultrasound in Medicine and Biology, 1996, 22, 119-128.	0.7	77
54	Intestinal hemorrhage from exposure to pulsed ultrasound. Ultrasound in Medicine and Biology, 1995, 21, 1067-1072.	0.7	75

#	Article	IF	CITATIONS
55	Thresholds for intestinal hemorrhage in mice exposed to a piezoelectric lithotripter. Ultrasound in Medicine and Biology, 1995, 21, 1239-1246.	0.7	29
56	Tactile perception of ultrasound. Journal of the Acoustical Society of America, 1995, 97, 3165-3170.	0.5	177
57	Mechanisms of interaction of ultrasound and lithotripter fields with cardiac and neural tissues. Journal of the Acoustical Society of America, 1994, 95, 1168-1168.	0.5	4
58	Damage to murine kidney and intestine from exposure to the fields of a piezoelectric lithotripter. Ultrasound in Medicine and Biology, 1994, 20, 589-594.	0.7	36
59	Effects of pulsed ultrasound on the frog heart: I. Thresholds for changes in cardiac rhythm and aortic pressure. Ultrasound in Medicine and Biology, 1993, 19, 385-390.	0.7	55
60	Effects of pulsed ultrasound on the frog heart: II. An investigation of heating as a potential mechanism. Ultrasound in Medicine and Biology, 1993, 19, 391-398.	0.7	32
61	Thresholds for premature ventricular contractions in frog hearts exposed to lithotripter fields. Ultrasound in Medicine and Biology, 1991, 17, 341-346.	0.7	52
62	Absorption of finite amplitude focused ultrasound. Journal of the Acoustical Society of America, 1991, 89, 2435-2447.	0.5	59
63	Estimates of wave front distortion from measurements of scattering by model random media and calf liver. Journal of the Acoustical Society of America, 1989, 85, 406-415.	0.5	24
64	Spectral power determinations of compressibility and density variations in model media and calf liver using ultrasound. Journal of the Acoustical Society of America, 1989, 85, 423-431.	0.5	26
65	Lack of effect of high-intensity pulsed ultrasound on sister chromatid exchange and in vitro chinese hamster ovary cell viability. Ultrasound in Medicine and Biology, 1985, 11, 491-495.	0.7	9